The maintenance of affected dentin can promote the greater conservation of tooth structure. The development of materials that have properties capable of reducing the demineralizing potential and/or even helping in dental remineralization is important for conservative dentistry. This study aimed to evaluate, in vitro, the alkalizing potential, fluoride as well as calcium ion release ability, antimicrobial activity, and dentin remineralization properties of resin-modified glass ionomer cement (RMGIC) incorporated with a bioactive filler (niobium phosphate (NbG) and bioglass (45S5)). The study samples were grouped into RMGIC, NbG, and 45S5. The materials' alkalizing potential, ability to release calcium as well as fluoride ions, and antimicrobial properties concerning UA159 biofilms were analyzed. The remineralization potential was evaluated using the Knoop microhardness test, which was performed at different depths. The alkalizing and fluoride release potential was higher for the 45S5 group ( < 0.001) over time. An increase in the microhardness of demineralized dentin was observed in the 45S5 and NbG groups ( < 0.001). No differences in biofilm formation were observed between the bioactive materials, although 45S5 exhibited lower biofilm acidogenicity at different time points ( < 0.001) and greater calcium ion release in the microbial environment. A resin-modified glass ionomer cement enriched with bioactive glasses, particularly 45S5, is a promising alternative for the treatment of demineralized dentin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10004000PMC
http://dx.doi.org/10.3390/ma16051765DOI Listing

Publication Analysis

Top Keywords

resin-modified glass
12
glass ionomer
12
bioactive filler
8
properties resin-modified
8
alkalizing potential
8
calcium ion
8
ion release
8
ionomer cement
8
demineralized dentin
8
45s5
6

Similar Publications

Clinical Effectiveness of Biomaterials in Indirect Pulp Therapy Treatment of Young Permanent Molars with Deep Carious Lesions: A Case-Control Study.

Int J Clin Pediatr Dent

November 2024

Department of Pediatric and Preventive Dentistry, Shree Guru Gobind Singh Tricentenary Dental College, Hospital and Research Institute, Gurugram, Haryana, India.

Aim: The present case-control study was planned to assess the comparative efficacy of resin-modified calcium silicate, resin-modified glass ionomer, and Dycal as pulp capping agents in indirect pulp therapy for deeply carious young permanent molars.

Materials And Methods: Thirty deeply carious young posterior teeth were treated by indirect pulp therapy. During the treatment, the cavity floor was lined with TheraCal or resin-modified glass ionomer cement (RMGIC) in the study group and with Dycal (control group) followed by GC IX and composite restoration.

View Article and Find Full Text PDF

(1) Background: Alkasite is a novel restorative material that has attracted interest in recent years because of its distinctive characteristics, including its high translucency and excellent biocompatibility. It is comparable to glass ionomer cement (GIC) and resin-modified glass ionomer cement (RMGIC) due to its fluoride-release ability and usage in esthetically concerned areas. This study aimed to assess the shear bond strength (SBS) of Alkasite restorative material in comparison with GIC and RMGIC (2) Methods: The study sample included 120 extracted sound primary molars and was randomly split into three groups, including group 1: RMGIC; group 2: Alkasite; and group 3: GIC.

View Article and Find Full Text PDF

Objective: The study aimed to conduct a comparative analysis of the effects of incorporating hydrazinyl coumarin derivative (HCD) in resin-modified (RMGIC) and conventional glass ionomer cement (cGIC) on their release profiles and antibacterial properties.

Method: Resin-modified GIC, Fuji II LC (F2) and high-fluoride cGIC, Fuji VII (F7) were used as controls. HCD was synthesized in-house, incorporated into both RMGIC and cGICs at 1 % and 2 % weight percentages (w/w), and chemically analyzed using Fourier transform infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

Statement Of Problem: Excess cement in implant-supported restorations can lead to peri-implant diseases, and its removal remains a clinical challenge. The optimum method of minimizing excess cement is unclear.

Purpose: The purpose of this in vitro study was to compare 3 cementation techniques and 3 cement types and measure excess cement.

View Article and Find Full Text PDF

Evaluation of the Effects of Thermal Aging on the Surface Roughness of Novel Tooth-Colored Restorative Materials.

Dent J (Basel)

December 2024

Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV 89557, USA.

The development of composite resins has led to novel materials aimed at improving restoration longevity. This study evaluates the surface roughness of four tooth-colored restorative materials after thermal aging. Eighty Class V preparations were restored with Admira Fusion, Beautifil II, Equia Forte HT, and Filtek.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!