The aim of this study was to use deep learning based on a deep convolutional neural network (DCNN) for automated image classification of healthy optic discs (OD) and visible optic disc drusen (ODD) on fundus autofluorescence (FAF) and color fundus photography (CFP). In this study, a total of 400 FAF and CFP images of patients with ODD and healthy controls were used. A pre-trained multi-layer Deep Convolutional Neural Network (DCNN) was trained and validated independently on FAF and CFP images. Training and validation accuracy and cross-entropy were recorded. Both generated DCNN classifiers were tested with 40 FAF and CFP images (20 ODD and 20 controls). After the repetition of 1000 training cycles, the training accuracy was 100%, the validation accuracy was 92% (CFP) and 96% (FAF), respectively. The cross-entropy was 0.04 (CFP) and 0.15 (FAF). The sensitivity, specificity, and accuracy of the DCNN for classification of FAF images was 100%. For the DCNN used to identify ODD on color fundus photographs, sensitivity was 85%, specificity 100%, and accuracy 92.5%. Differentiation between healthy controls and ODD on CFP and FAF images was possible with high specificity and sensitivity using a deep learning approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003756PMC
http://dx.doi.org/10.3390/jcm12051951DOI Listing

Publication Analysis

Top Keywords

color fundus
12
faf cfp
12
cfp images
12
healthy optic
8
optic discs
8
discs visible
8
visible optic
8
optic disc
8
disc drusen
8
fundus autofluorescence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!