Purpose: To analyze the changes in corneal innervation by means of in vivo corneal confocal microscopy (IVCM) in patients diagnosed with Evaporative (EDE) and Aqueous Deficient Dry Eye (ADDE) and treated with a standard treatment for Dry Eye Disease (DED) in combination with Plasma Rich in Growth Factors (PRGF).
Methods: Eighty-three patients diagnosed with DED were enrolled in this study and included in the EDE or ADDE subtype. The primary variables analyzed were the length, density and number of nerve branches, and the secondary variables were those related to the quantity and stability of the tear film and the subjective response of the patients measured with psychometric questionnaires.
Results: The combined treatment therapy with PRGF outperforms the standard treatment therapy in terms of subbasal nerve plexus regeneration, significantly increasing length, number of branches and nerve density, as well as significantly improving the stability of the tear film ( < 0.05 for all of them), and the most significant changes were located in the ADDE subtype.
Conclusions: the corneal reinnervation process responds in a different way depending on the treatment prescribed and the subtype of dry eye disease. In vivo confocal microscopy is presented as a powerful technique in the diagnosis and management of neurosensory abnormalities in DED.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003258 | PMC |
http://dx.doi.org/10.3390/jcm12051841 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China.
Purpose: Dry eye disease (DED) is a common ocular surface inflammatory disease with a complex pathogenesis. Herein, the role and effect of gasdermin E (GSDME) in DED pathogenesis were explored.
Methods: In vitro, flow cytometry, Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to determine the effects of hyperosmotic stress on pyroptosis, apoptosis, and cell viability in human corneal epithelial cells (HCECs).
Transl Vis Sci Technol
January 2025
FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Purpose: Geographic atrophy (GA), an advanced form of dry age-related macular degeneration (AMD), has limited treatment options. This study introduces a novel mouse model featuring an expanding GA patch that can be used to test mechanisms and therapeutics.
Methods: C57Bl/6J male mice (n = 96) aged 9-10 weeks received an intraperitoneal (IP) injection of 20 mg/kg sodium iodate (NaIO3).
Int J Rheum Dis
January 2025
Department of Rheumatology and Clinical Immunology, National Clinical Research Center for Dermatologic and Immunologic Diseases, Ministry of Education Key Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Objective: This study aimed to investigate the mortality, survival rates, and prognostic indicators of cancer occurrence after Sjögren's syndrome (SS-CA).
Methods: The medical records of patients with SS-CA at the Peking Union Medical College Hospital (PUMCH) between January 2010 and August 2022 were retrieved. Clinical data and survival outcomes were compared to controls.
Scand J Immunol
January 2025
Department of Ophthalmology, Shanghai Jiangong Hospital, Shanghai, China.
Dry eye disease (DED) is an inflammatory disorder in which CD4 T cells play a significant role in its pathogenesis. A CD4 T cell subset termed granulocyte-macrophage colony-stimulating factor-producing T helper (ThGM) cells would contribute to DED pathogenesis. However, the mechanisms by which the activity of ThGM cells is modulated are not thoroughly understood.
View Article and Find Full Text PDFCont Lens Anterior Eye
January 2025
Department of Physics of Condensed Matter, Optics Area, University of Seville, Reina Mercedes S/N, 41012 Seville, Spain.
Purpose: To characterize the ocular surface microbiota in regular contact lens wearers with dry eyes and assess the effectiveness of reducing bacterial load using a liposomal ozonated oil solution.
Methods: This prospective, longitudinal, controlled study randomized subjects into two groups. Group A (45 subjects) received hydroxypropylmethylcellulose (HPMC, Artific®), while Group B (41 subjects) received ozonated sunflower seed oil with soybean phospholipids (OSSO, Ozonest®).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!