Neutrophil and T-cell recruitment contribute to hepatic ischemia/reperfusion injury. The initial inflammatory response is orchestrated by Kupffer cells and liver sinusoid endothelial cells. However, other cell types, including γδ-Τ cells, seem to be key mediators in further inflammatory cell recruitment and proinflammatory cytokine release, including IL17a. In this study, we used an in vivo model of partial hepatic ischemia/reperfusion injury (IRI) to investigate the role of the γδ-Τ-cell receptor (γδTcR) and the role of IL17a in the pathogenesis of liver injury. Forty C57BL6 mice were subjected to 60 min of ischemia followed by 6 h of reperfusion (RN 6339/2/2016). Pretreatment with either anti-γδΤcR antibodies or anti-IL17a antibodies resulted in a reduction in histological and biochemical markers of liver injury as well as neutrophil and T-cell infiltration, inflammatory cytokine production and the downregulation of c-Jun and NF-κΒ. Overall, neutralizing either γδTcR or IL17a seems to have a protective role in liver IRI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002490PMC
http://dx.doi.org/10.3390/jcm12051751DOI Listing

Publication Analysis

Top Keywords

ischemia/reperfusion injury
12
neutrophil t-cell
8
hepatic ischemia/reperfusion
8
liver injury
8
injury
5
liver
5
inhibition γδ-tcr
4
il17a
4
γδ-tcr il17a
4
il17a reduces
4

Similar Publications

Background: Near-infrared spectroscopy (NIRS) enables a non-invasive measurement of tissue oxygen saturation (StO) in regions illuminated by near-infrared lights. Vascular occlusion test (VOT) serves as a model to artificially induce forearm ischemia-reperfusion. The combination of StO monitoring and VOT allows for dynamic evaluation of the balance between oxygen delivery and consumption in tissue, as well as the functional reserve of microcirculation.

View Article and Find Full Text PDF

Ischemia reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and ultimately leads to renal fibrosis, primarily via the transforming growth factor-β (TGF-β) pathway. Leucine-rich alpha-2-glycoprotein 1 (LRG1), a novel modulator of the TGF-β pathway, has been implicated in the modulation of renal fibrosis by affecting the TGF-β/Smad3 signaling axis. However, the role of LRG1 in the transition from AKI to chronic kidney disease (CKD) remains unclear.

View Article and Find Full Text PDF

Renal tubular S100A7a impairs fatty acid oxidation and exacerbates renal fibrosis via both intracellular and extracellular pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Peking University, Beijing 100034, China. Electronic address:

A couple of S100 family proteins (S100s) have been reported to exert pro-inflammatory functions in the progression of renal fibrosis (RF). Unlike some S100s which are expressed by both epithelial and stromal inflammatory cells, S100A7 is restricted expressed in epithelium. Persistent S100A7 expression occurs in some invasive carcinomas and is associated with poor prognostic factors.

View Article and Find Full Text PDF

Mitochondrial dysfunction has been reported to participate in the pathophysiological processes of cerebral ischaemia-reperfusion injury, which include reduced energy homeostasis, increased generation of oxidative stress species (ROS) and the release of apoptotic factors. Oxyglutamate carrier (OGC) is an important carrier protein on the inner mitochondrial membrane that can transport metabolites from the cytoplasm to the mitochondria. The role of OGC in cerebral ischaemia-reperfusion injury (I/R) remains unknown.

View Article and Find Full Text PDF

Anchusa italica Retz. (AIR), a traditional herbal remedy, is commonly applied in managing heart and brain disorders. However, its specific function and mechanism in acute cerebral ischemia-reperfusion injury (CIRI) are not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!