Glioblastoma multiforme (GBM) is a primary brain tumor that is very aggressive, resistant to treatment, and characterized by a high degree of anaplasia and proliferation. Routine treatment includes ablative surgery, chemotherapy, and radiotherapy. However, GMB rapidly relapses and develops radioresistance. Here, we briefly review the mechanisms underpinning radioresistance and discuss research to stop it and install anti-tumor defenses. Factors that participate in radioresistance are varied and include stem cells, tumor heterogeneity, tumor microenvironment, hypoxia, metabolic reprogramming, the chaperone system, non-coding RNAs, DNA repair, and extracellular vesicles (EVs). We direct our attention toward EVs because they are emerging as promising candidates as diagnostic and prognostication tools and as the basis for developing nanodevices for delivering anti-cancer agents directly into the tumor mass. EVs are relatively easy to obtain and manipulate to endow them with the desired anti-cancer properties and to administer them using minimally invasive procedures. Thus, isolating EVs from a GBM patient, supplying them with the necessary anti-cancer agent and the capability of recognizing a specified tissue-cell target, and reinjecting them into the original donor appears, at this time, as a reachable objective of personalized medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003080 | PMC |
http://dx.doi.org/10.3390/ijms24054883 | DOI Listing |
Neuro Oncol
January 2025
Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
Background: Glioblastoma stem cells (GSCs) and their exosomes (exos) are involved in shaping the immune microenvironment, which is important for tumor invasion and recurrence. However, studies involving GSC-derived exosomal circular RNAs (GDE-circRNAs) in regulating tumor microenvironment (TME) remain unknown. Here, we comprehensively evaluated the significance of a novel immune-related GDE-circRNA in glioma microenvironment.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ);
Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.
View Article and Find Full Text PDFBiomark Med
January 2025
Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Purpose: Glioblastoma multiforme (GBM) is an aggressive brain tumor. This meta-analysis investigates the association between HOTAIR expression levels and GBM.
Methods: We searched the literature for studies on HOTAIR expression in GBM patients.
Cureus
December 2024
Department of Neurosurgery, University of Tsukuba Hospital, Tsukuba, JPN.
Dysprosody affects rhythm and intonation in speech, resulting in the impairment of emotional or attitude expression, and usually presents as a negative symptom resulting in a monotonous tone. We herein report a rare case of recurrent glioblastoma (GBM) with dysprosody featuring sing-song speech. A 68-year-old man, formerly left-handed, with right temporal GBM underwent gross total resection.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
McGill University, Montreal Neurological Institute-Hospital, Montreal, Quebec, Canada.
Significance: Maximal safe resection of brain tumors can be performed by neurosurgeons through the use of accurate and practical guidance tools that provide real-time information during surgery. Current established adjuvant intraoperative technologies include neuronavigation guidance, intraoperative imaging (MRI and ultrasound), and 5-ALA for fluorescence-guided surgery.
Aim: We have developed intraoperative Raman spectroscopy as a real-time decision support system for neurosurgical guidance in brain tumors.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!