A Novel Early Life Stress Model Affects Brain Development and Behavior in Mice.

Int J Mol Sci

Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea.

Published: February 2023

Early life stress (ELS) in developing children has been linked to physical and psychological sequelae in adulthood. In the present study, we investigated the effects of ELS on brain and behavioral development by establishing a novel ELS model that combined the maternal separation paradigm and mesh platform condition. We found that the novel ELS model caused anxiety- and depression-like behaviors and induced social deficits and memory impairment in the offspring of mice. In particular, the novel ELS model induced more enhanced depression-like behavior and memory impairment than the maternal separation model, which is the established ELS model. Furthermore, the novel ELS caused upregulation of arginine vasopressin expression and downregulation of GABAergic interneuron markers, such as parvalbumin (), vasoactive intestinal peptide, and calbindin-D (), in the brains of the mice. Finally, the offspring in the novel ELS model showed a decreased number of cortical PV-, CaBP-28k-positive cells and an increased number of cortical ionized calcium-binding adaptors-positive cells in their brains compared to mice in the established ELS model. Collectively, these results indicated that the novel ELS model induced more negative effects on brain and behavioral development than the established ELS model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002977PMC
http://dx.doi.org/10.3390/ijms24054688DOI Listing

Publication Analysis

Top Keywords

els model
32
novel els
24
established els
12
els
11
model
10
early life
8
life stress
8
brain behavioral
8
behavioral development
8
maternal separation
8

Similar Publications

Unlabelled: The rat offers a uniquely valuable animal model in neuroscience, but we currently lack an individual-level understanding of the in vivo rat brain network. Here, leveraging longitudinal measures of cortical magnetization transfer ratio (MTR) from in vivo neuroimaging between postnatal days 20 (weanling) and 290 (mid-adulthood), we design and implement a computational pipeline that captures the network of structural similarity (MIND, morphometric inverse divergence) between each of 53 distinct cortical areas. We first characterized the normative development of the network in a cohort of rats undergoing typical development (N=47), and then contrasted these findings with a cohort exposed to early life stress (ELS, N=40).

View Article and Find Full Text PDF

Early-Life Adversity Predicts Markers of Aging-Related Neuroinflammation, Neurodegeneration, and Cognitive Impairment in Women.

Ann Neurol

January 2025

Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany.

Objective: Despite the overwhelming evidence for profound and longstanding effects of early-life stress (ELS) on inflammation, brain structure, and molecular aging, its impact on human brain aging and risk for neurodegenerative disease is poorly understood. We examined the impact of ELS severity in interaction with age on blood-based markers of neuroinflammation and neurodegeneration, brain volumes, and cognitive function in middle-aged women.

Methods: We recruited 179 women (aged 30-60 years) with and without ELS exposure before the onset of puberty.

View Article and Find Full Text PDF

Background/objectives: Rodents provide a useful translational model of fear- and anxiety-related behaviors. Previously stressed animals exhibit physiological and behavioral stress responses that parallel those observed in anxious humans. Patients diagnosed with post-traumatic stress disorder (PTSD) present with a spectrum of debilitating anxiety symptoms that result from exposure to one or more traumatic events, with individuals exposed to early adverse experiences and women having increased vulnerability for diagnoses; however, the mechanisms of this increased vulnerability remain unknown.

View Article and Find Full Text PDF

Early life stress (ELS) is associated with an increased risk for neuropsychiatric disorders, and both neuroinflammation and mitochondrial dysfunction seem to be central to mental health. Herein, using an animal model of ELS, a single episode of maternal deprivation (MD, 24 h on pnd 9) extensively documented to elicit behavioural anomalies in male and female Wistar rats, we investigated its consequences in terms of neuroinflammation and mitochondrial dynamics in the prefrontal cortex (PFC) and the hippocampal formation (HCF). MD differentially affected the brain content of cytokines: MD induced a transient increase in pro-inflammatory cytokines (IL-1β and IL-6) in the PFC, as well as in the levels of the anti-inflammatory cytokine IL-10 in the HCF.

View Article and Find Full Text PDF

Protein handling in kidney tubules.

Nat Rev Nephrol

January 2025

Institute of Anatomy, University of Zurich, Zurich, Switzerland.

The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!