Grapes are widely cultivated around the world and their quality has distinct regional characteristics. In this study, the qualitative characteristics of the 'Cabernet Sauvignon' grape variety in seven regions, from half-véraison to maturity, were analyzed comprehensively at physiological and transcriptional levels. The results indicated that the quality traits of 'Cabernet Sauvignon' grapes in different regions were significantly different with obvious regionality. Total phenols, anthocyanins, and titratable acids were the main factors of the regionality of berry quality, which were very sensitive to changes in the environment. It should be noted that the changes in titrating acids and total anthocyanin of berries vary greatly from half-véraison to maturity between regions. Moreover, the transcriptional analysis showed that the co-expressed genes between regions characterized the core transcriptome of berry development, while the unique genes of each region reflected the regionality of berries. The differentially expressed genes (DEGs) between half-véraison and maturity can be used to demonstrate that the environment of the regions could promote or inhibit gene expression. The functional enrichment suggested that these DEGs help to understand the interpretation of the plasticity of the quality composition of grapes according to the environment. Taken together, the information generated by this study could contribute to the development of viticultural practices aimed at making better use of native varieties for the development of wines with regional characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002954PMC
http://dx.doi.org/10.3390/ijms24054670DOI Listing

Publication Analysis

Top Keywords

half-véraison maturity
16
'cabernet sauvignon'
12
sauvignon' grape
8
regional characteristics
8
regions
6
quality
5
assessment 'cabernet
4
grape quality
4
half-véraison
4
quality half-véraison
4

Similar Publications

Cowpea is deemed as a food security crop due to its ability to produce significant yields under conditions where other staples fail. Its resilience in harsh environments; such as drought, heat and marginal soils; along with its nitrogen-fixing capabilities and suitability as livestock feed make cowpea a preferred choice in many farming systems across sub-Saharan Africa (SSA). Despite its importance, Cowpea yields in farmers' fields remain suboptimal, primarily due to biotic and abiotic factors and the use of either unimproved varieties or improved varieties that are not well-suited to local conditions.

View Article and Find Full Text PDF

Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.

View Article and Find Full Text PDF

Mathematical assessment of the role of temperature on desert locust population dynamics.

PLoS One

January 2025

School of Mathematics and Statistics, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America.

This study presents a novel non-autonomous mathematical model to explore the intricate relationship between temperature and desert locust population dynamics, considering the influence of both solitarious and gregarious phases across all life stages. The model incorporates temperature-dependent parameters for key biological processes, including egg development, hopper growth, adult maturation, and reproduction. Theoretical analysis reveals the model's capacity for complex dynamical behaviors, such as multiple stable states and backward bifurcations, suggesting the potential for sudden and unpredictable population shifts.

View Article and Find Full Text PDF

A tough soft-hard interface in the human knee joint driven by multiscale toughening mechanisms.

Proc Natl Acad Sci U S A

January 2025

Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.

Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.

View Article and Find Full Text PDF

Background: The entomopathogenic fungus Beauveria bassiana has been widely used for pest biocontrol with conidia serving as the main active agents. Conidial yield and quality are two important characteristics in fungal conidia development, however, the regulatory mechanisms that orchestrate conidial formation and development are not well understood.

Results: In this study, we identified a ZnCys transcription factor BbCDR1 that inhibits conidial production while promoting conidial maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!