Gamma-Aminobutyric Acid Signaling in Damage Response, Metabolism, and Disease.

Int J Mol Sci

Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.

Published: February 2023

Gamma-aminobutyric acid (GABA) plays a crucial role in signal transduction and can function as a neurotransmitter. Although many studies have been conducted on GABA in brain biology, the cellular function and physiological relevance of GABA in other metabolic organs remain unclear. Here, we will discuss recent advances in understanding GABA metabolism with a focus on its biosynthesis and cellular functions in other organs. The mechanisms of GABA in liver biology and disease have revealed new ways to link the biosynthesis of GABA to its cellular function. By reviewing what is known about the distinct effects of GABA and GABA-mediated metabolites in physiological pathways, we provide a framework for understanding newly identified targets regulating the damage response, with implications for ameliorating metabolic diseases. With this review, we suggest that further research is necessary to develop GABA's beneficial and toxic effects on metabolic disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003236PMC
http://dx.doi.org/10.3390/ijms24054584DOI Listing

Publication Analysis

Top Keywords

gamma-aminobutyric acid
8
damage response
8
cellular function
8
gaba
7
acid signaling
4
signaling damage
4
response metabolism
4
metabolism disease
4
disease gamma-aminobutyric
4
acid gaba
4

Similar Publications

The aim of this study is to investigate the impact of using probiotics with strains related to dopamine and gamma-aminobutyric acid production on clinical features of autism spectrum disorder (ASD) and/or attention deficit/hyperactivity disorder (ADHD). This randomized, controlled trial involved 38 children with ADHD and 42 children with ASD, aged 5-16 years, who received probiotics (Lactiplantibacillus plantarum and Levilactobacillus brevis 109/cfu/daily) or placebo for 12 weeks. Parent-reported symptoms were assessed using Conners' 3rd-Ed and the Social Responsiveness Scale Test, 2nd-Ed (SRS-2), and children completed the Conners Continuous Performance Test, 3rd-Ed (CPT 3) or Conners Kiddie CPT, 2nd-Ed (K-CPT 2).

View Article and Find Full Text PDF

Differential Inhibition by Cenobamate of Canonical Human Nav1.5 Ion Channels and Several Point Mutants.

Int J Mol Sci

January 2025

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a new and highly effective antiseizure compound used for the treatment of adults with focal onset seizures and particularly for epilepsy resistant to other antiepileptic drugs. It acts on multiple targets, as it is a positive allosteric activator of γ-aminobutyric acid type A (GABA) receptors and an inhibitor of neuronal sodium channels, particularly of the late or persistent Na current. We recently evidenced the inhibitory effects of cenobamate on the peak and late current component of the human cardiac isoform hNav1.

View Article and Find Full Text PDF

Previous studies have demonstrated that γ-Aminobutyric acid (GABA) effectively alleviates heavy metal stresses by maintaining the redox balance and reducing the accumulation of reactive oxygen species (ROS). However, little is known about the role of GABA on programmed cell death (PCD) under Cd treatments in plants. The present study investigated the effects of GABA on Cd-induced PCD in two species, oilseed rape (, ), and black mustard (, ).

View Article and Find Full Text PDF

Introduction: Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.

View Article and Find Full Text PDF

Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!