The study of DNA repair in hyperthermophiles has the potential to elucidate the mechanisms of genome integrity maintenance systems under extreme conditions. Previous biochemical studies have suggested that the single-stranded DNA-binding protein (SSB) from the hyperthermophilic crenarchaeon is involved in the maintenance of genome integrity, namely, in mutation avoidance, homologous recombination (HR), and the repair of helix-distorting DNA lesions. However, no genetic study has been reported that elucidates whether SSB actually maintains genome integrity in in vivo. Here, we characterized mutant phenotypes of the -deleted strain Δ in the thermophilic crenarchaeon . Notably, an increase (29-fold) in mutation rate and a defect in HR frequency was observed in Δ, indicating that SSB was involved in mutation avoidance and HR in vivo. We characterized the sensitivities of Δ, in parallel with putative SSB-interacting protein-encoding gene-deleted strains, to DNA-damaging agents. The results showed that not only Δ but also Δ and ΔSaci_0790 were markedly sensitive to a wide variety of helix-distorting DNA-damaging agents, indicating that SSB, a novel helicase aLhr1, and a hypothetical protein Saci_0790, were involved in the repair of helix-distorting DNA lesions. This study expands our knowledge of the impact of SSB on genome integrity and identifies novel and key proteins for genome integrity in hyperthermophilic archaea in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003305 | PMC |
http://dx.doi.org/10.3390/ijms24054558 | DOI Listing |
Nutrients
January 2025
ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.
Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institutes of Environmental Health Sciences (NIH), Research Triangle Park, Durham, NC 27709, USA.
Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters-such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins-play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy.
DNA damage response (DDR) is a highly conserved and complex signal transduction network required for preserving genome integrity. DNA repair pathways downstream of DDR include the tyrosyl-DNA phosphodiesterase1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine residue of topoisomerase I (TopI) and 3'-phosphate end of DNA. A small TDP1 subfamily, composed of TDP1α and TDP1β, is present in plants.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100 Pavia, Italy.
DNA damage response (DDR) contributes to seed quality by guarding genome integrity in the delicate phases of pre- and post-germination. As a key determinant of stress tolerance and resilience, DDR has notable implications on the wider scale of the agroecosystems challenged by harsh climatic events. The present review focuses on the existing and documented links that interconnect DDR efficiency with an array of molecular hallmarks with biochemical, molecular, and physiological valence within the seed metabolic networks.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
January 2025
Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA. Electronic address:
An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!