Plant polysaccharides exhibit many biological activities that are remarkably affected by molecular size and structures. This study aimed to investigate the degradation effect of ultrasonic-assisted Fenton reaction on the polysaccharide (PP). PP and its three degradation products (PP3, PP5, and PP7) were obtained from optimized hot water extraction and different Fenton reaction treatments, respectively. The results showed that the molecular weight (Mw) of the degraded fractions significantly decreased after treatment with the Fenton reaction. But the backbone characteristics and conformational structure were similar between PP and PP-degraded products, which was estimated by comparing monosaccharides composition, functional group signals in FT-IR spectra, X-ray differential patterns, and proton signals in H NMR. In addition, PP7, with an Mw of 5.89 kDa, exhibited stronger antioxidant activities in both the chemiluminescence-based and HHL5 cell-based methods. The results indicated that ultrasonic-assisted Fenton degradation might be used to improve the biological activities of natural polysaccharides by adjusting the molecular size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10003133PMC
http://dx.doi.org/10.3390/ijms24054506DOI Listing

Publication Analysis

Top Keywords

ultrasonic-assisted fenton
12
fenton reaction
12
fenton degradation
8
biological activities
8
molecular size
8
fenton
5
extraction structural
4
structural antioxidant
4
antioxidant properties
4
properties oligosaccharides
4

Similar Publications

Nickel/iron-layered double hydroxide (NiFe-LDH) tends to undergo an electrochemically induced surface reconstruction during the water oxidation in alkaline, which will consume excess electric energy to overcome the reconstruction thermodynamic barrier. In the present work, a novel ultrasonic wave-assisted Fenton reaction strategy is employed to synthesize the surface reconstructed NiFe-LDH nanosheets cultivated directly on Ni foam (NiFe-LDH/NF-W). Morphological and structural characterizations reveal that the low-spin states of Ni (te) and Fe (te) on the NiFe-LDH surface partially transform into high-spin states of Ni (te) and Fe (te) and formation of the highly active species of NiFeOOH.

View Article and Find Full Text PDF

Ultrasonic extraction and antioxidant evaluation of oat saponins.

Ultrason Sonochem

October 2024

College of Agronomy, Shanxi Agricultural University, Taigu 030800, PR China; Collaborative Innovation Center for High-quality and Efficient Production of Characteristic Crops on the Loess Plateau, Jointly Built by the Province and the Ministry, Taigu 030800, PR China. Electronic address:

The aim of this study is to optimize the extraction process of oat saponins (Os) and to evaluate their antioxidant potential. Single factor experiment, response surface optimization design, and orthogonal test were employed to optimize the process of ultrasonic-assisted extraction of Os, and the optimal extraction conditions were as followed: ethanol volume fraction of 80 %, material-solvent ratio of 1:14, ultrasonic power of 400 W, ultrasonic time of 25 min, extraction temperature of 60℃, extraction time of 180 min, and the extraction rate of Os was 0.317 %±0.

View Article and Find Full Text PDF

Sonoactivated Nanomaterials: A potent armament for wastewater treatment.

Ultrason Sonochem

October 2023

Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:

The world is currently facing a critical issue of water pollution, with wastewater being a major contributor. It comes from different types of pollutants, including industrial, medical, agricultural, and domestic. Effective treatment of wastewater requires efficient degradation of pollutants and carcinogens prior to discharge.

View Article and Find Full Text PDF

Fenton-like degradation of contaminants is considered to be a feasible method for eliminating environmental pollution. In this study, a novel ternary MgCuFeO/SiO/CeO nanocomposite was fabricated using a novel ultrasonic-assisted technique, and investigated as a Fenton-like catalyst for the removal of tartrazine (TRZ) dye. The nanocomposite was synthesized by first coating the SiO shell around the MgCuFeO core via a Stöber-like process to form MgCuFeO/SiO.

View Article and Find Full Text PDF

A soybean protein isolate (SPI)-apricot polysaccharide gel with hypolipidemic activity that can be used for 3D printing was prepared and the mechanism of its gel formation was studied in this work. The results demonstrated that adding apricot polysaccharide to SPI could effectively improve the bound water content, viscoelastic properties and rheological properties of the gels. Low-field NMR, FT-IR spectroscopy and surface hydrophobicity confirmed that the interactions between SPI and apricot polysaccharide were mainly realized by electrostatic interactions, hydrophobic and hydrogen bonding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!