The major oxidized product of cholesterol, 7-Ketocholesterol (7KCh), causes cellular oxidative damage. In the present study, we investigated the physiological responses of cardiomyocytes to 7KCh. A 7KCh treatment inhibited the growth of cardiac cells and their mitochondrial oxygen consumption. It was accompanied by a compensatory increase in mitochondrial mass and adaptive metabolic remodeling. The application of [U-C] glucose labeling revealed an increased production of malonyl-CoA but a decreased formation of hydroxymethylglutaryl-coenzyme A (HMG-CoA) in the 7KCh-treated cells. The flux of the tricarboxylic acid (TCA) cycle decreased, while that of anaplerotic reaction increased, suggesting a net conversion of pyruvate to malonyl-CoA. The accumulation of malonyl-CoA inhibited the carnitine palmitoyltransferase-1 (CPT-1) activity, probably accounting for the 7-KCh-induced suppression of β-oxidation. We further examined the physiological roles of malonyl-CoA accumulation. Treatment with the inhibitor of malonyl-CoA decarboxylase, which increased the intracellular malonyl-CoA level, mitigated the growth inhibitory effect of 7KCh, whereas the treatment with the inhibitor of acetyl-CoA carboxylase, which reduced malonyl-CoA content, aggravated such a growth inhibitory effect. Knockout of malonyl-CoA decarboxylase gene () alleviated the growth inhibitory effect of 7KCh. It was accompanied by improvement of the mitochondrial functions. These findings suggest that the formation of malonyl-CoA may represent a compensatory cytoprotective mechanism to sustain the growth of 7KCh-treated cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002498 | PMC |
http://dx.doi.org/10.3390/ijms24054418 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!