Glycyl-tRNA synthetase (GARS) is a potential oncogene associated with poor overall survival in various cancers. However, its role in prostate cancer (PCa) has not been investigated. Protein expression of GARS was investigated in benign, incidental, advanced, and castrate-resistant PCa (CRPC) patient samples. We also investigated the role of GARS in vitro and validated GARS clinical outcomes and its underlying mechanism, utilizing The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA PRAD) database. Our data revealed a significant association between GARS protein expression and Gleason groups. Knockdown of in PC3 cell lines attenuated cell migration and invasion and resulted in early apoptosis signs and cellular arrest in S phase. Bioinformatically, higher expression was observed in TCGA PRAD cohort, and there was significant association with higher Gleason groups, pathological stage, and lymph nodes metastasis. High expression was also significantly correlated with high-risk genomic aberrations such as , , , , mutations, and , , and gene fusions. Gene Set Enrichment Analysis (GSEA) of through the TCGA PRAD database provided evidence for upregulation of biological processes such as cellular proliferation. Our findings support the oncogenic role of GARS involved in cellular proliferation and poor clinical outcome and provide further evidence for its use as a potential biomarker in PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001614PMC
http://dx.doi.org/10.3390/ijms24054260DOI Listing

Publication Analysis

Top Keywords

tcga prad
12
glycyl-trna synthetase
8
synthetase gars
8
prostate cancer
8
migration invasion
8
protein expression
8
role gars
8
prad database
8
gleason groups
8
cellular proliferation
8

Similar Publications

Background: Endothelial cells are integral components of the tumor microenvironment and play a multifaceted role in tumor immunotherapy. Targeting endothelial cells and related signaling pathways can improve the effectiveness of immunotherapy by normalizing tumor blood vessels and promoting immune cell infiltration. However, to date, there have been no comprehensive studies analyzing the role of endothelial cells in the diagnosis and treatment of prostate adenocarcinoma (PRAD).

View Article and Find Full Text PDF

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

Castration-resistant prostate cancer (CRPC) presents significant therapeutic challenges due to its aggressive nature and poor prognosis. Targeting Aurora-A kinase (AURKA) has shown promise in cancer treatment. This study investigates the efficacy of ART-T cell membrane-encapsulated AMS@AD (CM-AMS@AD) nanoparticles (NPs) in a photothermal-chemotherapy-immunotherapy combination for CRPC.

View Article and Find Full Text PDF

Multi-Omics Study Reveals Nc886/vtRNA2-1 as a Positive Regulator of Prostate Cancer Cell Immunity.

J Proteome Res

December 2024

Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay.

Noncoding RNA 886 has emerged as a pivotal regulatory RNA with distinct functions across tissues, acting as a regulator of protein activity by directly binding to protein partners. While it is well recognized as a tumor suppressor in prostate cancer, the underlying molecular mechanisms remain elusive. To discover the principal pathways regulated by nc886 in prostate cancer, we used a transcriptomic and proteomic approach analyzing malignant DU145, LNCaP, PC3, and benign RWPE-1 prostate cell line models transiently transfected with in vitro transcribed nc886 or antisense oligonucleotides.

View Article and Find Full Text PDF

Background: Prostate adenocarcinoma (PRAD) is a common male urinary system cancer, and its targeted treatment is difficult. This study aimed to investigate the value of B cell senescence-related genes in PRAD prognosis.

Methods: PRAD sample expression and clinical information were downloaded from The Cancer Genome Atlas (TCGA) Program and Gene Expression Omnibus (GEO) databases, and B cell senescence-related gene sets were obtained from the Genecards library.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!