Growing pollution is making it necessary to find new strategies and materials for the removal of undesired compounds from the environment. Adsorption is still one of the simplest and most efficient routes for the remediation of air, soil, and water. However, the choice of adsorbent for a given application ultimately depends on its performance assessment results. Here, we show that the uptake of and capacity for dimethoate adsorption by different viscose-derived (activated) carbons strongly depend on the adsorbent dose applied in the adsorption measurements. The specific surface areas of the investigated materials varied across a wide range from 264 m g to 2833 m g. For a dimethoate concentration of 5 × 10 mol L and a high adsorbent dose of 10 mg mL, the adsorption capacities were all below 15 mg g. In the case of high-surface-area activated carbons, the uptakes were almost 100% under identical conditions. However, when the adsorbent dose was reduced to 0.01 mg mL, uptake was significantly reduced, but adsorption capacities as high as 1280 mg g were obtained. Further, adsorption capacities were linked to adsorbents' physical and chemical properties (specific surface area, pore size distribution, chemical composition), and thermodynamic parameters for the adsorption process were evaluated. Based on the Gibbs free energy of the adsorption process, it can be suggested that physisorption was operative for all studied adsorbents. Finally, we suggest that a proper comparison of different adsorbents requires standardization of the protocols used to evaluate pollutant uptakes and adsorption capacities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001822 | PMC |
http://dx.doi.org/10.3390/ijerph20054553 | DOI Listing |
Adv Mater
January 2025
School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China.
Sulfur conversion reactions are the foundation of lithium-sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal-metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å).
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China.
Steam explosion (SE) and cellulase treatment are potentially effective processing methods for by-products, for use in high-value applications. The treatment conditions were optimized by response surface methodology, increasing the soluble dietary fiber (SDF) yield by 1.52 and 1.
View Article and Find Full Text PDFHeliyon
January 2025
Alanya Alaaddin Keykubat University, Rafet Kayis Engineering Faculty, Department of Engineering Basic Science, 07450, Alanya, Antalya, Turkiye.
Removal of Rhodamine B (RhB) from aqueous solutions was performed by the batch adsorption process. Colemanite was characterized as an adsorbent by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF). The effects of contact time, the effect of the initial concentration of the dye, the amount of adsorbent and temperature parameters on the removal of RhB were investigated.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Water Management and Treatment Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.
This study introduces a sustainable biological approach for synthesizing silver nanoparticles (AgNPs) using Conocarpus seeds, aimed at improving the adsorption and photocatalytic degradation of methylene blue (MB) in wastewater treatment. The photocatalytic efficiency of AgNPs, synthesized under varying concentrations of silver nitrate (AgNO) and pH levels, was evaluated, together with the effectiveness of a photocatalytic reactor. The synthesized samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
Porous liquids (PLs) are an exciting new class of materials for carbon capture due to their high gas adsorption capacity and ease of industrial implementation. They are composed of sorbent particles suspended in a nonadsorbed solvent, forming a liquid with permanent porosity. While PLs have a vast number of potential compositions based on the number of solvents and sorbent materials available, most of the research has been focused on the selection of the sorbent rather than the solvent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!