How Well Do Our Adsorbents Actually Perform?-The Case of Dimethoate Removal Using Viscose Fiber-Derived Carbons.

Int J Environ Res Public Health

VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia.

Published: March 2023

Growing pollution is making it necessary to find new strategies and materials for the removal of undesired compounds from the environment. Adsorption is still one of the simplest and most efficient routes for the remediation of air, soil, and water. However, the choice of adsorbent for a given application ultimately depends on its performance assessment results. Here, we show that the uptake of and capacity for dimethoate adsorption by different viscose-derived (activated) carbons strongly depend on the adsorbent dose applied in the adsorption measurements. The specific surface areas of the investigated materials varied across a wide range from 264 m g to 2833 m g. For a dimethoate concentration of 5 × 10 mol L and a high adsorbent dose of 10 mg mL, the adsorption capacities were all below 15 mg g. In the case of high-surface-area activated carbons, the uptakes were almost 100% under identical conditions. However, when the adsorbent dose was reduced to 0.01 mg mL, uptake was significantly reduced, but adsorption capacities as high as 1280 mg g were obtained. Further, adsorption capacities were linked to adsorbents' physical and chemical properties (specific surface area, pore size distribution, chemical composition), and thermodynamic parameters for the adsorption process were evaluated. Based on the Gibbs free energy of the adsorption process, it can be suggested that physisorption was operative for all studied adsorbents. Finally, we suggest that a proper comparison of different adsorbents requires standardization of the protocols used to evaluate pollutant uptakes and adsorption capacities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001822PMC
http://dx.doi.org/10.3390/ijerph20054553DOI Listing

Publication Analysis

Top Keywords

adsorption capacities
16
adsorbent dose
12
adsorption
9
activated carbons
8
specific surface
8
adsorption process
8
well adsorbents
4
adsorbents perform?-the
4
perform?-the case
4
case dimethoate
4

Similar Publications

Sulfur conversion reactions are the foundation of lithium-sulfur batteries but usually possess sluggish kinetics during practical battery operation. Herein, a high-entropy single-atom catalyst (HESAC) is synthesized for this process. In contrast to conventional dual-atom catalysts that form metal-metal bonds, the center metal atoms in HESAC are not bonded but exhibit long-range interactions at a sub-nanometer distance (<9 Å).

View Article and Find Full Text PDF

Steam explosion (SE) and cellulase treatment are potentially effective processing methods for by-products, for use in high-value applications. The treatment conditions were optimized by response surface methodology, increasing the soluble dietary fiber (SDF) yield by 1.52 and 1.

View Article and Find Full Text PDF

Effective removal of rhodamine B dyestuff using colemanite as an adsorbent: Isotherm, kinetic, thermodynamic analysis and mechanism.

Heliyon

January 2025

Alanya Alaaddin Keykubat University, Rafet Kayis Engineering Faculty, Department of Engineering Basic Science, 07450, Alanya, Antalya, Turkiye.

Removal of Rhodamine B (RhB) from aqueous solutions was performed by the batch adsorption process. Colemanite was characterized as an adsorbent by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF). The effects of contact time, the effect of the initial concentration of the dye, the amount of adsorbent and temperature parameters on the removal of RhB were investigated.

View Article and Find Full Text PDF

This study introduces a sustainable biological approach for synthesizing silver nanoparticles (AgNPs) using Conocarpus seeds, aimed at improving the adsorption and photocatalytic degradation of methylene blue (MB) in wastewater treatment. The photocatalytic efficiency of AgNPs, synthesized under varying concentrations of silver nitrate (AgNO) and pH levels, was evaluated, together with the effectiveness of a photocatalytic reactor. The synthesized samples were characterized using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM).

View Article and Find Full Text PDF

Control of Permanent Porosity in Type 3 Porous Liquids via Solvent Clustering.

ACS Appl Mater Interfaces

January 2025

Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.

Porous liquids (PLs) are an exciting new class of materials for carbon capture due to their high gas adsorption capacity and ease of industrial implementation. They are composed of sorbent particles suspended in a nonadsorbed solvent, forming a liquid with permanent porosity. While PLs have a vast number of potential compositions based on the number of solvents and sorbent materials available, most of the research has been focused on the selection of the sorbent rather than the solvent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!