Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Parent polycyclic aromatic hydrocarbons (PAHs) in the gas and particle fraction were measured between May and August 2021 at a coastal urban site in Poland, to examine their chemical characteristics, distribution, sources, deposition fluxes and interactions with basic meteorological drivers. The mean concentration of PAHs in the gas phase was significantly higher (26.26 ± 15.83 ng m) than levels measured in the particle phase (1.77 ± 1.26 ng m). The highest concentration in the gas phase was found for phenanthrene (Phe), followed by fluoranthene (Flt), acenaphthene (Ace) and naphthalene (Naph). The contribution from each group of PAHs to the total particulate phase accounted for 50%, 25%, 14% and 12% for 3-, 4-, 5- and 6-ring compounds, respectively. The mean ΣPAH deposition flux was 59 ± 24 ng m day. During the whole field campaign, the efficient removal of PM-bound PAHs was typically observed after precipitation events. Based on statistical analysis, it was found that 4-ring PAHs were less effectively removed (25%) by daily precipitation as compared to 5- and 6-ring components, whose fluxes decreased by 32% and 53%, respectively. This study revealed local urban sources such as vehicular emissions, coal-fired power plants, shipping activities, docks/ports infrastructure and municipal solid waste recycling units as predominant contributors to PM-bound and gas-phase PAHs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001597 | PMC |
http://dx.doi.org/10.3390/ijerph20054475 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!