Organochlorine pesticides (OCPs) were typical persistent organic pollutants that posed great hazards and high risks in soil. In this study, a peanut shell biochar-loaded nano zero-valent iron (BC/nZVI) material was prepared in combination with soil indigenous microorganisms to enhance the degradation of α-hexachlorocyclohexane(α-HCH) and γ-hexachlorocyclohexane(γ-HCH) in water and soil. The effects of BC/nZVI on indigenous microorganisms in soil were investigated based on the changes in redox potential and dehydrogenase activity in the soil. The results showed as follows: (1) The specific surface area of peanut shell biochar loaded with nano-zero-valent iron was large, and the nano-zero-valent iron particles were evenly distributed on the peanut shell biochar; (2) peanut shell BC/nZVI had a good degradation effect on α-HCH and γ-HCH in water, with degradation rates of 64.18% for α-HCH and 91.87% for γ-HCH in 24 h; (3) peanut shell BC/nZVI also had a good degradation effect on α-HCH and γ-HCH in soil, and the degradation rates of α-HCH and γ-HCH in the 1% BC/nZVI reached 55.2% and 85.4%, second only to 1% zero-valent iron. The degradation rate was the fastest from 0 to 7 days, while the soil oxidation-reduction potential (ORP) increased sharply. (4) The addition of BC/nZVI to the soil resulted in a significant increase in dehydrogenase activity, which further promoted the degradation of HCHs; the amount of HCHs degradation was significantly negatively correlated with dehydrogenase activity. This study provides a remediation strategy for HCH-contaminated sites, reducing the human health risk of HCHs in the soil while helping to improve the soil and increase the activity of soil microorganisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002398 | PMC |
http://dx.doi.org/10.3390/ijerph20054314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!