is considered an invasive species that has affected the biogeochemical circle of carbon in coastal wetlands around the world. Nevertheless, it is still unclear how invasion affects the carbon storage capacity of coastal wetlands as carbon pools through bacterial changes. Herein, bacterial communities and soil carbon content in coastal wetland native areas and invasion areas were detected. It was found that an invasion brought more organic carbon and resulted in the increase in in bare flats and areas. When decomposition capacity was not sufficient, large amounts of organic carbon may be stored in specific chemical forms, such as monosaccharides, carboxylic acids, alcohols, etc. The results have also shown that soil bacterial communities were highly similar between the bare flat and invasion area, which is extremely conducive to the rapid growth of . However, an invasion would decrease total carbon contents and inorganic carbon contents in the area. This is not conducive to the stability of the soil carbon pool and soil health. These findings may complement, to some extent, the shortcomings of the interaction between and bacterial communities, and their joint effect on soil carbon storage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001918 | PMC |
http://dx.doi.org/10.3390/ijerph20054308 | DOI Listing |
Sci Rep
December 2024
College of Grassland Science, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Hydrothermal biochar has demonstrated potential in enhancing crop growth by improving soil properties and microbial activity; however, its effectiveness varies with application rate, with excessive amounts potentially inhibiting plant growth. This study employed a pot experiment approach to compare varying application rates of hydrothermal biochar (ranging from 0 to 50 t/ha) and to analyze its effects on alfalfa biomass, photosynthetic efficiency, soil nutrient content, and microbial community composition. Biochar application increased alfalfa dry weight by 12.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy.
Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.
View Article and Find Full Text PDFSci Rep
December 2024
Theoretical Ecology and Engineering Ecology Research Group, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
Temperature and nutrients are known as crucial drivers for the variations of bacterial community structure and functions in oceans and lakes. However, their significance and mechanisms in influencing the bacterial community structure and function in mountain stream remain unclear. In this study, we investigated the spatiotemporal patterns of the bacterial communities and the main environmental factors in the Taizicheng River, a high-latitude mountainous stream, to reveal the main driving factors for sedimental bacterial communities.
View Article and Find Full Text PDFSci Rep
December 2024
School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
Outdoor microcosms, metabarcoding with next-generation sequencing of the 16S rRNA bacterial gene, total body score (TBS) and physicochemical analyses were used to monitor Mus musculus decomposition aboveground (A) and in the subsurface (S), and compared to soil-only controls (C). As determined by MaAsLin2 analysis, significant shifts in bacterial communities at 30 cm depths within the A, S and C treatments distinguished control from experimental soils, and between aboveground and subsurface deposition, demonstrating the potential for gravesoil discrimination during the first 90 days. For example, Dokdonella (p = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!