A breast tissue biopsy is performed to identify the nature of a tumour, as it can be either cancerous or benign. The first implementations involved the use of machine learning algorithms. Random Forest and Support Vector Machine (SVM) were used to classify the input histopathological images into whether they were cancerous or non-cancerous. The implementations continued to provide promising results, and then Artificial Neural Networks (ANNs) were applied for this purpose. We propose an approach for reconstructing the images using a Variational Autoencoder (VAE) and the Denoising Variational Autoencoder (DVAE) and then use a Convolutional Neural Network (CNN) model. Afterwards, we predicted whether the input image was cancerous or non-cancerous. Our implementation provides predictions with 73% accuracy, which is greater than the results produced by our custom-built CNN on our dataset. The proposed architecture will prove to be a new field of research and a new area to be explored in the field of computer vision using CNN and Generative Modelling since it incorporates reconstructions of the original input images and provides predictions on them thereafter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10002012 | PMC |
http://dx.doi.org/10.3390/ijerph20054244 | DOI Listing |
Sci Rep
January 2025
School of Mathematics and Statistics, Shaoguan University, Shaoguan, 512005, China.
Recently, deep latent variable models have made significant progress in dealing with missing data problems, benefiting from their ability to capture intricate and non-linear relationships within the data. In this work, we further investigate the potential of Variational Autoencoders (VAEs) in addressing the uncertainty associated with missing data via a multiple importance sampling strategy. We propose a Missing data Multiple Importance Sampling Variational Auto-Encoder (MMISVAE) method to effectively model incomplete data.
View Article and Find Full Text PDFGenetic prediction of complex traits, enabled by large-scale genomic studies, has created new measures to understand individual genetic predisposition. Polygenic Risk Scores (PRS) offer a way to aggregate information across the genome, enabling personalized risk prediction for complex traits and diseases. However, conventional PRS calculation methods that rely on linear models are limited in their ability to capture complex patterns and interaction effects in high-dimensional genomic data.
View Article and Find Full Text PDFQuantitative measurements produced by mass spectrometry proteomics experiments offer a direct way to explore the role of proteins in molecular mechanisms. However, analysis of such data is challenging due to the large proportion of missing values. A common strategy to address this issue is to utilize an imputed dataset, which often introduces systematic bias into down-stream analyses if the imputation errors are ignored.
View Article and Find Full Text PDFBiophys Chem
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India. Electronic address:
Quantitative characterization of protein conformational landscapes is a computationally challenging task due to their high dimensionality and inherent complexity. In this study, we systematically benchmark several widely used dimensionality reduction and clustering methods to analyze the conformational states of the Trp-Cage mini-protein, a model system with well-documented folding dynamics. Dimensionality reduction techniques, including Principal Component Analysis (PCA), Time-lagged Independent Component Analysis (TICA), and Variational Autoencoders (VAE), were employed to project the high-dimensional free energy landscape onto 2D spaces for visualization.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK.
A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!