Microencapsulation with Different Starch-Based Polymers for Improving Oxidative Stability of Cold-Pressed Hickory ( Sarg.) Oil.

Foods

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology Research, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Published: February 2023

Hickory ( Sarg.) oil is a nutrient-dense edible woody oil, with its unsaturated fatty acids accounting for more than 90% of total ones, and liable to oxidation spoilage. To efficiently improve its stability and expand its application fields, the microencapsulation of cold-pressed hickory oil (CHO) by the molecular embedding method and freeze-drying technique was performed using malt dextrin (MD), hydroxylpropyl-β-cyclodextrin (HP-β-CD), β-cyclodextrin (β-CD), or porous starch (PS) as a wall material. Two wall materials and/or their CHO microcapsulates (CHOM) with higher encapsulation efficiencies (EE) were selected to carry out physical and chemical characterizations using laser particle size diffractometer, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, derivative thermogravimetry, and oxidative stability tests. Results indicated β-CDCHOM and PSCHOM had significantly higher EE values (80.40% and 75.52%) than MDCHOM and HP-β-CDCHOM (39.36% and 48.32%). The particle sizes of the two microcapsules selected were both widely distributed with their spans being more than 1 µm and a certain degree of polydispersity. Microstructural and chemical characterizations indicated that β-CDCHOM had comparatively stable structure and good thermal stability compared with PSCHOM. Storage performances under light, oxygen, and temperature showed that β-CDCHOM was superior to PSCHOM, especially in terms of thermal and oxidative stability. This study demonstrates that β-CD embedding can be applied to improve the oxidative stability of vegetable oils such as hickory oil and act as a means of preparing functional supplementary material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000867PMC
http://dx.doi.org/10.3390/foods12050953DOI Listing

Publication Analysis

Top Keywords

oxidative stability
16
cold-pressed hickory
8
hickory sarg
8
sarg oil
8
hickory oil
8
chemical characterizations
8
indicated β-cdchom
8
stability
6
oil
5
microencapsulation starch-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!