Introduction: Progressive advanced non-small cell lung cancer (NSCLC) accounts for about 80-85% of all lung cancers. Approximately 10-50% of patients with NSCLC harbor targetable activating mutations, such as in-frame deletions in Exon 19 (Ex19del) of . Currently, for patients with advanced NSCLC, testing for sensitizing mutations in is mandatory prior to the administration of tyrosine kinase inhibitors.
Patients And Methods: Plasma was collected from patients with NSCLC. We carried out targeted NGS using the Plasma-SeqSensei™ SOLID CANCER IVD kit on cfDNA (circulating free DNA). Clinical concordance for plasma detection of known oncogenic drivers was reported. In a subset of cases, validation was carried out using an orthogonal OncoBEAM EGFR V2 assay, as well as with our custom validated NGS assay. Somatic alterations were filtered, removing somatic mutations attributable to clonal hematopoiesis for our custom validated NGS assay.
Results: In the plasma samples, driver targetable mutations were studied, with a mutant allele frequency (MAF) ranging from 0.00% (negative detection) to 82.25%, using the targeted next-generation sequencing Plasma-SeqSensei™ SOLID CANCER IVD Kit. In comparison with the OncoBEAM EGFR V2 kit, the concordance is 89.16% (based on the common genomic regions). The sensitivity and specificity rates based on the genomic regions ( exons 18, 19, 20, and 21) were 84.62% and 94.67%. Furthermore, the observed clinical genomic discordances were present in 25% of the samples: 5% in those linked to the lower of coverage of the OncoBEAM EGFR V2 kit, 7% in those induced by the sensitivity limit on the with the Plasma-SeqSensei™ SOLID CANCER IVD Kit, and 13% in the samples linked to the larger , , coverage of the Plasma-SeqSensei™ SOLID CANCER IVD kit. Most of these somatic alterations were cross validated in our orthogonal custom validated NGS assay, used in the routine management of patients. The concordance is 82.19% in the common genomic regions ( exons 18, 19, 20, 21; exons 2, 3, 4; exons 11, 15; and exons 10, 21). The sensitivity and specificity rates were 89.38% and 76.12%, respectively. The 32% of genomic discordances were composed of 5% caused by the limit of coverage of the Plasma-SeqSensei™ SOLID CANCER IVD kit, 11% induced by the sensitivity limit of our custom validated NGS assay, and 16% linked to the additional oncodriver analysis, which is only covered by our custom validated NGS assay.
Conclusions: The Plasma-SeqSensei™ SOLID CANCER IVD kit resulted in de novo detection of targetable oncogenic drivers and resistance alterations, with a high sensitivity and accuracy for low and high cfDNA inputs. Thus, this assay is a sensitive, robust, and accurate test.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001056 | PMC |
http://dx.doi.org/10.3390/cancers15051574 | DOI Listing |
Alzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).
Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.
Alzheimers Dement
December 2024
Yonsei University, Incheon, Incheon, Korea, Republic of (South).
Background: As amyloid-β (Aβ) aggregates are considered as the biomarkers and key factors in the pathology of Alzheimer's disease, there has been extensive investigation into Aβ-targeting compounds for the development of diagnostics and drug discovery related to the disorder. However, the polymorphic and heterogenous nature of Aβ aggregates impedes the structural understanding of their structure. Consequently it is a major challenge to develop new diagnostic and therapeutic development of AD and to study the mechanism of Aβ-targeting compounds.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac Dr, Tallahassee, Florida 32310, United States.
The contribution of protons in or near biradical polarizing agents in Dynamic Nuclear Polarization (DNP) has recently been under scrutiny. Results from selective deuteration and simulations have previously suggested that the role of protons in the biradical molecule depends on the strength of the electron-electron coupling. Here we use the cross effect DNP mechanism to identify and acquire H solid-state NMR spectra of the protons that contribute to propagation of the hyperpolarization, via an experimental approach dubbed Nuclear-Nuclear Double Resonance (NUDOR).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Manitoba, Winnipeg, MB, Canada.
Background: In the last decade, virtual reality has become a popular tool for rehabilitation. It is quite useful in spatial rehabilitation for Alzheimer's disease (AD) as it allows safe navigation in a virtual environment which looks realistic. However, a drawback of virtual reality is cybersickness.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The tau protein misfolds in neurodegenerative diseases such as Alzheimer's disease (AD). These pathological tau aggregates are associated with neuronal membranes, but molecular structural information about how disease-like tau fibrils interact with the lipid membrane is scarce. Here, we use solid-state NMR to investigate the structure of a tau construct bearing four AD-relevant phospho-mimetic mutations (4E tau) with cholesterol-containing high-curvature lipid membranes, which mimic the membrane of synaptic vesicles in neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!