The aim of the article is to provide a summary of the work carried out in the framework of a research project funded by the Italian Ministry of Research. The main goal of the activity was to introduce multiple tools for reliable, affordable, and high-performance microwave hyperthermia for cancer therapy. The proposed methodologies and approaches target microwave diagnostics, accurate in vivo electromagnetic parameters estimation, and improvement in treatment planning using a single device. This article provides an overview of the proposed and tested techniques and shows their complementarity and interconnection. To highlight the approach, we also present a novel combination of specific absorption rate optimization via convex programming with a temperature-based refinement method implemented to mitigate the effect of thermal boundary conditions on the final temperature map. To this purpose, numerical tests were carried out for both simple and anatomically detailed 3D scenarios for the head and neck region. These preliminary results show the potential of the combined technique and improvements in the temperature coverage of the tumor target with respect to the case wherein no refinement is adopted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000666PMC
http://dx.doi.org/10.3390/cancers15051560DOI Listing

Publication Analysis

Top Keywords

microwave hyperthermia
8
treatment planning
8
field temperature
4
temperature shaping
4
shaping microwave
4
hyperthermia treatment
4
planning tools
4
tools enhance
4
enhance sar-based
4
sar-based procedures
4

Similar Publications

Synchronous Interference of Dual Metabolic Pathways Mediated by HS Gas/GOx for Augmenting Tumor Microwave Thermal Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.

View Article and Find Full Text PDF

Plantar warts, or verrucae plantares, are skin lesions on the soles of the feet caused by human papillomavirus (HPV). These warts are prevalent and affect up to 33% of children and 3.5% of adults.

View Article and Find Full Text PDF

Background: Colon cancer (CC) is the main fatal disease of humans. Microwave hyperthermia (MH) is an adjuvant therapy for diverse cancers. Tumor necrosis factor-α induced protein-8-like 2 (TIPE2) is a tumor suppressor.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess how different levels of thyroid-stimulating hormone (TSH) affect tumor progression and survival in patients with early-stage papillary thyroid cancer treated with microwave ablation (MWA).
  • It analyzed the medical records of 525 patients, categorizing them into uni-focal (U-PTC) and multifocal (M-PTC) groups based on TSH levels after treatment, and observed the rates of tumor progression and survival outcomes.
  • Results indicated that lower TSH levels in U-PTC patients correlated with higher tumor progression rates and reduced progression-free survival compared to medium and high TSH levels, whereas M-PTC patients showed no significant relationship between TSH levels and progression.
View Article and Find Full Text PDF

Thermal-responsive activation of engineered bacteria to trigger antitumor immunity post microwave ablation therapy.

Nat Commun

December 2024

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, China.

Incomplete tumor removal after microwave ablation (MWA), a widely used hyperthermia-based therapy, can result in tumor recurrence. Herein, attenuated Salmonella typhimurium VNP20009 is engineered to release interleukin-15&interleukin-15-receptor-alpha (IL-15&IL-15Rα) in response to mildly elevated temperature. Such 15&15R@VNP colonizes in tumors upon intravenous injection, and the expression of IL-15&IL-15Rα is triggered by MWA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!