Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Left atrioventricular valve (LAVV) stenosis following an atrioventricular septal defect (AVSD) repair is a rare but potentially life-threatening complication. While echocardiographic quantification of diastolic transvalvular pressure gradients is paramount in the evaluation of a newly corrected valve function, it is hypothesized that these measured gradients are overestimated immediately following a cardiopulmonary bypass (CPB) due to the altered hemodynamics when compared to postoperative valve assessments using awake transthoracic echocardiography (TTE) upon recovery after surgery.
Methods: Out of the 72 patients screened for inclusion at a tertiary center, 39 patients undergoing an AVSD repair with both intraoperative transesophageal echocardiograms (TEE, performed immediately after a CPB) and an awake TTE (performed prior to hospital discharge) were retrospectively selected. The mean (MPGs) and peak pressure gradients (PPGs) were quantified using a Doppler echocardiography and other measures of interest were recorded (e.g., a non-invasive surrogate of the cardiac output and index (CI), left ventricular ejection fraction, blood pressures and airway pressures). The variables were analyzed using the paired Student's t-tests and Spearman's correlation coefficients.
Results: The MPGs were significantly higher in the intraoperative measurements when compared to the awake TTE (3.0 ± 1.2 vs. 2.3 ± 1.1 mmHg; < 0.01); however, the PPGs did not significantly differ (6.6 ± 2.7 vs. 5.7 ± 2.8 mmHg; = 0.06). Although the assessed intraoperative heart rates (HRs) were also higher (132 ± 17 vs. 114 ± 21 bpm; < 0.001), there was no correlation found between the MPG and the HR, or any other parameter of interest, at either time-point. In a further analysis, a moderate to strong correlation was observed in the linear relationship between the CI and the MPG (r = 0.60; < 0.001). During the in-hospital follow-up period, no patients died or required an intervention due to LAVV stenosis.
Conclusions: The Doppler-based quantification of diastolic transvalvular LAVV mean pressure gradients using intraoperative transesophageal echocardiography seems to be prone to overestimation due to altered hemodynamics immediately after an AVSD repair. Thus, the current hemodynamic state should be taken into consideration during the intraoperative interpretation of these gradients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001237 | PMC |
http://dx.doi.org/10.3390/diagnostics13050957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!