CD133, also called prominin-1, is widely known as a cancer stem cell marker, and its high expression correlates with a poor prognosis in many cancers. CD133 was originally discovered as a plasma membranous protein in stem/progenitor cells. It is now known that Src family kinases phosphorylate the C-terminal of CD133. However, when Src kinase activity is low, CD133 is not phosphorylated by Src and is preferentially downregulated into cells through endocytosis. Endosomal CD133 then associates with HDAC6, thereby recruiting it to the centrosome via dynein motors. Thus, CD133 protein is now known to localize to the centrosome as endosomes as well as to the plasma membrane. More recently, a mechanism to explain the involvement of CD133 endosomes in asymmetric cell division was reported. Here, we would like to introduce the relationship between autophagy regulation and asymmetric cell division mediated by CD133 endosomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10001168PMC
http://dx.doi.org/10.3390/cells12050819DOI Listing

Publication Analysis

Top Keywords

asymmetric cell
12
cell division
12
cd133
9
cancer stem
8
stem cell
8
cell marker
8
cd133 endosomes
8
cell
5
molecular regulation
4
regulation autophagy
4

Similar Publications

In the Drosophila brain, neuronal diversity originates from approximately 100 neural stem cells, each dividing asymmetrically. Precise mapping of cell lineages at the single-cell resolution is crucial for understanding the mechanisms that direct neuronal specification. However, existing methods for high-resolution lineage tracing are notably time-consuming and labor-intensive.

View Article and Find Full Text PDF

GEMLI: Gene Expression Memory-Based Lineage Inference from Single-Cell RNA-Sequencing Datasets.

Methods Mol Biol

January 2025

Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Institute of Bioengineering, Lausanne, Switzerland.

Gene expression memory-based lineage inference (GEMLI) is a computational tool allowing to predict cell lineages solely from single-cell RNA-sequencing (scRNA-seq) datasets and is publicly available as an R package on GitHub. GEMLI is based on the occurrence of gene expression memory, i.e.

View Article and Find Full Text PDF

Background: Laryngeal cancer is a common head and neck cancer, and its occurrence and development are closely related to a variety of epigenetic modifications. protein arginine methyltransferase 1 (PRMT1) is an important type I protein arginine methyltransferase, which catalyzes the monomethylation and asymmetric dimethylation of arginine and participates in the occurrence and development of a variety of cancers. Current research has found that the expression of PRMT1 is increased in laryngeal carcinoma tissues.

View Article and Find Full Text PDF

Dopamine and alkylated silica functionalized Janus gauze with fluid control capability for rapid hemostasis.

Biomater Adv

December 2024

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. Electronic address:

Hemorrhage caused by trauma is a global public health issue. While traditional cotton gauze compression is commonly used for hemostasis, its efficacy is limited in severe hemorrhage cases. Herein, we developed a gauze with Janus wettability (JW-G).

View Article and Find Full Text PDF

Electron microscopy (EM) techniques have been crucial for understanding the structure of biological specimens such as cells, tissues and macromolecular assemblies. Viruses and related viral assemblies are ideal targets for structural studies that help to define essential biological functions. Whereas conventional EM methods use chemical fixation, dehydration, and staining of the specimens, cryogenic electron microscopy (cryo-EM) preserves the native hydrated state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!