The organization of eukaryotic genome in the nucleus, a double-membraned organelle separated from the cytoplasm, is highly complex and dynamic. The functional architecture of the nucleus is confined by the layers of internal and cytoplasmic elements, including chromatin organization, nuclear envelope associated proteome and transport, nuclear-cytoskeletal contacts, and the mechano-regulatory signaling cascades. The size and morphology of the nucleus could impose a significant impact on nuclear mechanics, chromatin organization, gene expression, cell functionality and disease development. The maintenance of nuclear organization during genetic or physical perturbation is crucial for the viability and lifespan of the cell. Abnormal nuclear envelope morphologies, such as invagination and blebbing, have functional implications in several human disorders, including cancer, accelerated aging, thyroid disorders, and different types of neuro-muscular diseases. Despite the evident interplay between nuclear structure and nuclear function, our knowledge about the underlying molecular mechanisms for regulation of nuclear morphology and cell functionality during health and illness is rather poor. This review highlights the essential nuclear, cellular, and extracellular components that govern the organization of nuclei and functional consequences associated with nuclear morphometric aberrations. Finally, we discuss the recent developments with diagnostic and therapeutic implications targeting nuclear morphology in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10000962PMC
http://dx.doi.org/10.3390/cells12050706DOI Listing

Publication Analysis

Top Keywords

nuclear
10
nuclear organization
8
functionality health
8
health disease
8
chromatin organization
8
nuclear envelope
8
cell functionality
8
nuclear morphology
8
organization
6
tuning nuclear
4

Similar Publications

Objectives: To assess the usefulness of sentinel lymph node biopsy (SLNB) in patients with early-stage oral squamous cell carcinoma (OSCC).

Materials And Methods: Seventy-five patients (mean age 62 years) diagnosed with cT1-2 N0 underwent SLNB with Tc, lymphoscintigraphy/SPECT-CT, and gamma probe detection with intraoperative histological examination of the resected sentinel lymph nodes (SLNs). Elective neck dissection was performed during the same surgical procedure of primary tumor resection when malignant deposits were detected microscopically.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

The present study investigated the neuromodulatory substrates of salience processing and its impact on memory encoding and behaviour, with a specific focus on two distinct types of salience: reward and contextual unexpectedness. 46 Participants performed a novel task paradigm modulating these two aspects independently and allowing for investigating their distinct and interactive effects on memory encoding while undergoing high-resolution fMRI. By using advanced image processing techniques tailored to examine midbrain and brainstem nuclei with high precision, our study additionally aimed to elucidate differential activation patterns in subcortical nuclei in response to reward-associated and contextually unexpected stimuli, including distinct pathways involving in particular dopaminergic modulation.

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!