A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting effectiveness of anti-VEGF injection through self-supervised learning in OCT images. | LitMetric

Anti-vascular endothelial growth factor (Anti-VEGF) therapy has become a standard way for choroidal neovascularization (CNV) and cystoid macular edema (CME) treatment. However, anti-VEGF injection is a long-term therapy with expensive cost and may be not effective for some patients. Therefore, predicting the effectiveness of anti-VEGF injection before the therapy is necessary. In this study, a new optical coherence tomography (OCT) images based self-supervised learning (OCT-SSL) model for predicting the effectiveness of anti-VEGF injection is developed. In OCT-SSL, we pre-train a deep encoder-decoder network through self-supervised learning to learn the general features using a public OCT image dataset. Then, model fine-tuning is performed on our own OCT dataset to learn the discriminative features to predict the effectiveness of anti-VEGF. Finally, classifier trained by the features from fine-tuned encoder as a feature extractor is built to predict the response. Experimental results on our private OCT dataset demonstrated that the proposed OCT-SSL can achieve an average accuracy, area under the curve (AUC), sensitivity and specificity of 0.93, 0.98, 0.94 and 0.91, respectively. Meanwhile, it is found that not only the lesion region but also the normal region in OCT image is related to the effectiveness of anti-VEGF.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2023114DOI Listing

Publication Analysis

Top Keywords

effectiveness anti-vegf
20
anti-vegf injection
16
predicting effectiveness
12
self-supervised learning
12
oct images
8
oct image
8
oct dataset
8
anti-vegf
7
oct
6
injection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!