The introduction of connected autonomous vehicles (CAVs) gives rise to mixed traffic flow on the roadway, and the coexistence of human-driven vehicles (HVs) and CAVs may last for several decades. CAVs are expected to improve the efficiency of mixed traffic flow. In this paper, the car-following behavior of HVs is modeled by the intelligent driver model (IDM) based on actual trajectory data. The cooperative adaptive cruise control (CACC) model from the PATH laboratory is adopted for the car-following model of CAVs. The string stability of mixed traffic flow is analyzed for different market penetration rates of CAVs, showing that CAVs can effectively prevent stop-and-go waves from forming and propagating. In addition, the fundamental diagram is obtained from the equilibrium state, and the flow-density chart indicates that CAVs can improve the capacity of mixed traffic flow. Furthermore, the periodic boundary condition is designed for numerical simulation according to the infinite length platoon assumption in the analytical approach. The simulation results are consistent with the analytical solutions, suggesting the validity of the string stability and fundamental diagram analysis of mixed traffic flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2023107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!