The regenerative braking in the tram allows the energy to be returned to the power grid through a power inverter. Since the inverter location between the tram and the power grid is not fixed, resulting in a wide variety of impedance networks at grid coupling points, posing a severe threat to the stable operation of the grid-tied inverter (GTI). By independently changing the loop characteristics of the GTI, the adaptive fuzzy PI controller (AFPIC) can adjust according to different impedance network parameters. It is challenging to fulfill the stability margin requirements of GTI under high network impedance since the PI controller has phase lag characteristics. A correction method of series virtual impedance is proposed, which connects the inductive link in a series configuration with the inverter output impedance, correcting the inverter equivalent output impedance from resistance-capacitance to resistance-inductance and improving the system stability margin. Feedforward control is adopted to improve the system's gain in the low-frequency band. Finally, the specific series impedance parameters are obtained by determining the maximum network impedance and setting the minimum phase margin of 45°. The realization of virtual impedance is simulated by conversion to an equivalent control block diagram, and the effectiveness and feasibility of the proposed method are verified by simulation and a 1 kW experimental prototype.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2023073DOI Listing

Publication Analysis

Top Keywords

impedance
10
series impedance
8
grid-tied inverter
8
power grid
8
stability margin
8
network impedance
8
virtual impedance
8
output impedance
8
inverter
6
adaptive fuzzy-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!