Background: Artemisia subg. Seriphidium, one of the most species-diverse groups within Artemisia, grows mainly in arid or semi-arid regions in temperate climates. Some members have considerable medicinal, ecological, and economic value. Previous studies on this subgenus have been limited by a dearth of genetic information and inadequate sampling, hampering our understanding of their phylogenetics and evolutionary history. We therefore sequenced and compared the chloroplast genomes of this subgenus, and evaluated their phylogenetic relationships.
Results: We newly sequenced 18 chloroplast genomes of 16 subg. Seriphidium species and compared them with one previously published taxon. The chloroplast genomes, at 150,586-151,256 bp in length, comprised 133 genes, including 87 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and one pseudogene, with GC content of 37.40-37.46%. Comparative analysis showed that genomic structures and gene order were relatively conserved, with only some variation in IR borders. A total of 2203 repeats (1385 SSRs and 818 LDRs) and 8 highly variable loci (trnK - rps16, trnE - ropB, trnT, ndhC - trnV, ndhF, rpl32 - trnL, ndhG - ndhI and ycf1) were detected in subg. Seriphidium chloroplast genomes. Phylogenetic analysis of the whole chloroplast genomes based on maximum likelihood and Bayesian inference analyses resolved subg. Seriphidium as polyphyletic, and segregated into two main clades, with the monospecific sect. Minchunensa embedded within sect. Seriphidium, suggesting that the whole chloroplast genomes can be used as molecular markers to infer the interspecific relationship of subg. Seriphidium taxa.
Conclusion: Our findings reveal inconsistencies between the molecular phylogeny and traditional taxonomy of the subg. Seriphidium and provide new insights into the evolutionary development of this complex taxon. Meanwhile, the whole chloroplast genomes with sufficiently polymorphic can be used as superbarcodes to resolve interspecific relationships in subg. Seriphidium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999589 | PMC |
http://dx.doi.org/10.1186/s12870-023-04113-1 | DOI Listing |
BMC Plant Biol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Science, Henan Agricultural University, Zhengzhou, China.
Background: Assessing the current status and identifying the mechanisms threatening endangered plants are significant challenges and fundamental to biodiversity conservation, particularly for protecting Tertiary relict trees and plant species with extremely small populations (PSESP). Ulmus elongata (Ulmus, Ulmaceae) with high values for the ornamental application, is a Tertiary relict tree species and one of the members from PSESP in China. Currently, the wild populations of U.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, California, USA.
We present the complete chloroplast genome of the eelgrass from Monterey, California. The genome is circular and 144,675 bp in length. It consists of 82 protein-coding, 31 transfer RNA, and 8 ribosomal RNA genes and is 99.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
School of Agriculture, Yunnan University, Kunming, China.
'Yunqie 9' was selected by the Horticultural Research Institute of Yunnan Academy of Agricultural Sciences based on the local environment of Yunnan Province. It is excellent in fruit quality and yield, but it is relatively weak in disease resistance. No information on complete chloroplast genome and position in the phylogeny of to restrict its genetic improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!