Laser Thermo-Photobiomodulation of Bone Marrow Mesenchymal Stem Cells.

Bull Exp Biol Med

Federal Research Center of Crystallography and Photonics, Russian Academy of Sciences, Institute of Photonic Technologies, Russian Academy of Sciences, Moscow, Russia.

Published: February 2023

We studied the effect of laser radiation of moderate intensity with a wavelength of 970 nm on the efficiency of colony formation of rat bone marrow mesenchymal stem cells (MSC) in vitro. In this case, photobimodulation and thermal heating of MSC occur simultaneously. This combined laser treatment allows increasing the number of colonies by 6 times in comparison with the control and by more than 3 times in comparison with thermal heating alone. The mechanism of such an increase is associated with combined thermal and light effects of laser radiation of moderate intensity, which stimulates cell proliferation. This phenomenon can be used as the basis for solving the most important task of cell transplantation, associated with the expansion of autologous stem cells and activation of their proliferative potential.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-023-05741-1DOI Listing

Publication Analysis

Top Keywords

stem cells
12
bone marrow
8
marrow mesenchymal
8
mesenchymal stem
8
laser radiation
8
radiation moderate
8
moderate intensity
8
thermal heating
8
times comparison
8
laser
4

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Introduction: This study compared the clinical outcomes of allogenic cultured limbal epithelial transplantation (ACLET) and cultivated oral mucosal epithelial transplantation (COMET) in the management of limbal stem cell deficiency (LSCD).

Methods: Forty-one COMET procedures in 40 eyes and 69 ACLET procedures in 54 eyes were performed in the Corneoplastic Unit of Queen Victoria Hospital, East Grinstead. Data were examined for demographics, indications, ocular surface stability, absence of epithelial defect, ocular surface inflammation, visual outcomes, and intra- and postoperative complications.

View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!