Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ventral tegmental area (VTA) is an essential component of the mesocorticolimbic dopamine (DA) circuit that processes reward and motivated behaviors. The VTA contains DA neurons essential in this process, as well as GABAergic inhibitory cells that regulate DA cell activity. In response to drug exposure, synaptic connections of the VTA circuit can be rewired via synaptic plasticity-a phenomenon thought to be responsible for the pathology of drug dependence. While synaptic plasticity to VTA DA neurons as well as prefrontal cortex to nucleus accumbens GABA neurons are well studied, VTA GABA cell plasticity, specifically inhibitory inputs to VTA GABA neurons, is less understood. Therefore, we investigated the plasticity of these inhibitory inputs. Using whole cell electrophysiology in GAD67-GFP mice to identify GABA cells, we observed that these VTA GABA cells experience either inhibitory GABAergic long-term potentiation (iLTP) or inhibitory long-term depression (iLTD) in response to a 5 Hz stimulus. Paired pulse ratios, coefficient of variance, and failure rates suggest a presynaptic mechanism for both plasticity types, where iLTP is NMDA receptor-dependent and iLTD is GABA receptor-dependent-this being the first report of iLTD onto VTA GABA cells. As illicit drug exposure can alter VTA plasticity, we employed chronic intermittent exposure (CIE) to ethanol (EtOH) vapor in male and female mice to examine its potential impact on VTA GABA input plasticity. Chronic EtOH vapor exposure produced measurable behavioral changes illustrating dependence and concomitantly prevented previously observed iLTD, which continued in air-exposed controls, illustrating the impact of EtOH on VTA neurocircuitry and suggesting physiologic mechanisms at play in alcohol use disorder and withdrawal states. Taken together, these novel findings of unique GABAergic synapses exhibiting either iLTP or iLTD within the mesolimbic circuit, and EtOH blockade specifically of iLTD, characterize inhibitory VTA plasticity as a malleable, experience-dependent system modified by EtOH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10354227 | PMC |
http://dx.doi.org/10.1038/s41386-023-01554-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!