How an odor is perceived is to a large extent dependent on the context in which that odor is (or has been) experienced. For example, experiencing an odor in mixture with taste during consumption can instill taste qualities in the percept of that odor (e.g., vanilla, an odor, has a gustatory quality: sweet). How associative features of odors are encoded in the brain remains unknown, but previous work suggests an important role for ongoing interactions between piriform cortex and extraolfactory systems. Here, we tested the hypothesis that piriform cortex dynamically encodes taste associations of odors. Rats were trained to associate one of two odors with saccharin; the other odor remained neutral. Before and after training, we tested preferences for the saccharin-associated odor versus the neutral odor, and recorded spiking responses from ensembles of neurons in posterior piriform cortex (pPC) to intraoral delivery of small drops of the same odor solutions. The results show that animals successfully learned taste-odor associations. At the neural level, single pPC neuron responses to the saccharin-paired odor were selectively altered following conditioning. Altered response patterns appeared after 1 s following stimulus delivery, and successfully discriminated between the two odors. However, firing rate patterns in the late epoch appeared different from firing rates early in the early epoch (<1 s following stimulus delivery). That is, in different response epoch, neurons used different codes to represent the difference between the two odors. The same dynamic coding scheme was observed at the ensemble level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062488PMC
http://dx.doi.org/10.1523/ENEURO.0010-23.2023DOI Listing

Publication Analysis

Top Keywords

piriform cortex
16
odor
11
posterior piriform
8
taste-odor association
4
association learning
4
learning alters
4
alters dynamics
4
dynamics intraoral
4
intraoral odor
4
odor responses
4

Similar Publications

The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours. Early-life disruptions in these circuits are linked to neuropsychiatric disorders, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons.

View Article and Find Full Text PDF

Although the pathophysiology of pain has been investigated tremendously, there are still many open questions with regard to specific pain entities and their pain-related symptoms. To increase the translational impact of (preclinical) animal neuroimaging pain studies, the use of disease-specific pain models, as well as relevant stimulus modalities, are critical. We developed a comprehensive framework for brain network analysis combining functional magnetic resonance imaging (MRI) with graph-theory (GT) and data classification by linear discriminant analysis.

View Article and Find Full Text PDF

Unlabelled: LCN2 has an osteokine important for appetite regulation; in type 2 diabetes (T2D) it is not known whether appetite regulation mediated by LCN2 in the brain is altered. In this work, we focus on exploring the role of blocking LCN2 in metabolic health and appetite regulation within the central nervous system of mice with T2D.

Material And Methods: 4-week-old male C57BL/6 mice were used, divided into four experimental groups: intact, T2D, TD2/anti-LCN2, and T2D/IgG as isotype control.

View Article and Find Full Text PDF

Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex.

View Article and Find Full Text PDF

The piriform cortex (PC) plays a pivotal role in the onset and propagation of temporal lobe epilepsy (TLE), making it a potential target for therapeutic interventions. This review delves into the anatomy and epileptogenic connections of the PC, highlighting its significance in seizure initiation and resistance to pharmacological treatments. Despite its importance, the PC remains underexplored in surgical approaches for TLE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!