Development of polyanion-metal ion solution systems to overcome phospholipids-related matrix effects in LC-MS/MS-based bioanalysis.

Anal Chim Acta

Division of Biopharmaceutics and Pharmacokinetics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China. Electronic address:

Published: April 2023

Phospholipids-related matrix effects are a major source impacting the reproducibility of analyte quantification in LC-MS/MS-based bioanalysis. This study intended to evaluate different combinations of polyanion-metal ion based solution system for phospholipids removal and elimination of matrix effects in human plasma. Blank plasma samples or plasma samples spiked with model analytes were proceeded with different combinations of polyanions (dextran sulfate sodium (DSS) and alkalized colloidal silica (Ludox)) and metal ions (MnCl, LaCl, and ZrOCl) followed with acetonitrile-based protein precipitation. The representative classes of phospholipids and model analytes (acid, neutral, and base) were detected using multiple reaction monitoring mode. The polyanion-metal ion systems were explored for providing balanced analyte recovery and phospholipids removal by optimizing reagent concentrations or adding formic acid and citric acid as the shielding modifiers. The optimized polyanion-metal ion systems were further evaluated for eliminating matrix effects of non-polar and polar compounds. Any combinations of polyanions (DSS and Ludox) and metal ions (LaCl and ZrOCl) could completely remove phospholipids at best-case scenario, while the analyte recovery is low for compounds with special chelation groups. Addition of formic acid or citric acid can improve analyte recovery but significantly decrease the removal efficiency of phospholipids. Optimized ZrOCl-Ludox/DSS systems provided efficient phospholipids removal (>85%) and adequate analyte recovery, and the systems also correctly eliminated ion suppression or enhancement of the non-polar and polar drugs. The developed ZrOCl-Ludox/DSS systems are cost-effective and versatile for balanced phospholipids removal and analyte recovery and provide adequate elimination of matrix effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.340973DOI Listing

Publication Analysis

Top Keywords

matrix effects
20
analyte recovery
20
polyanion-metal ion
16
phospholipids removal
16
phospholipids-related matrix
8
lc-ms/ms-based bioanalysis
8
elimination matrix
8
plasma samples
8
model analytes
8
combinations polyanions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!