Cytokine Release Syndrome in the Pediatric Population and Implications for Intensive Care Management.

Crit Care Clin

Department of Pediatrics, Division of Pediatric Critical Care Medicine, Weill Cornell Medicine, 525 East 68th Street, M508, New York, NY 10065, USA.

Published: April 2023

Cytokine release syndrome represents a spectrum of disease varying from fever alone to multiorgan system failure. Most commonly seen following treatment with chimeric antigen receptor T cell therapy, it is increasingly being described with other immunotherapies as well as following hematopoietic stem cell transplant. As its symptoms are nonspecific, awareness is key to timely diagnosis and initiation of treatment. Given the high risk of cardiopulmonary involvement, critical care providers must be familiar with the cause, symptoms, and therapeutic options. Current treatment modalities focus on immunosuppression and targeted cytokine therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccc.2022.09.004DOI Listing

Publication Analysis

Top Keywords

cytokine release
8
release syndrome
8
syndrome pediatric
4
pediatric population
4
population implications
4
implications intensive
4
intensive care
4
care management
4
management cytokine
4
syndrome represents
4

Similar Publications

Tofacitinib and budesonide treatment affect stemness and chemokine release in IBD patient-derived colonoids.

Sci Rep

January 2025

Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Prinsesse Kristinas gt. 1, Trondheim, 7030, Norway.

Restoration of the intestinal epithelial barrier is crucial for achieving mucosal healing, the therapeutic goal for inflammatory bowel disease (IBD). During homeostasis, epithelial renewal is maintained by crypt stem cells and progenitors that cease to divide as they differentiate into mature colonocytes. Inflammation is a major effector of mucosal damage in IBD and has been found to affect epithelial stemness, regeneration and cellular functions.

View Article and Find Full Text PDF

A cytokine storm is marked by excessive pro-inflammatory cytokine release, and has emerged as a key factor in severe COVID-19 cases - making it a critical therapeutic target. However, its pathophysiology was poorly understood, which hindered effective treatment. SARS-CoV-2 initially disrupts angiotensin signalling, promoting inflammation through ACE-2 downregulation.

View Article and Find Full Text PDF

The pathophysiological relationship between wound healing impairment and diabetes is an intricate process. Burn injury among diabetes patients leads to neurological, vascular, and immunological abnormalities along with impaired activities of cell proliferation, collagen production, growth factors, and cytokine activities with huge bacterial infestation. In our study, we aimed to achieve a burn wound dressing material with the help of electrospun Chitosan/Polyethylene oxide/Rosmarinic acid (CS/PEO/RA) nanofibers.

View Article and Find Full Text PDF

S100 calcium-binding protein A9 (S100A9, also known as calgranulin B) is expressed and secreted by myeloid cells under inflammatory conditions, and S100A9 can amplify inflammation. There is a large increase in S100A9 expression in the brains of patients with neurodegenerative diseases, such as Alzheimer's disease, and S100A9 has been suggested to contribute to neurodegeneration, but the mechanisms are unclear. Here we investigated the effects of extracellular recombinant S100A9 protein on microglia, neurons and synapses in primary rat brain neuronal-glial cell cultures.

View Article and Find Full Text PDF

Smart theranostic contact lenses.

J Control Release

January 2025

Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea. Electronic address:

Although smart contact lenses have demonstrated great potential in theranostics, there remain critical challenges and opportunities in their commercial development. In this Perspective, the current status and capability of smart theranostic contact lenses are highlighted, focusing on their application as sensing systems for detecting biomarkers such as glucose, intraocular pressure (IOP), and inflammatory cytokines, and as drug delivery systems (DDS) for precise and controlled therapy. Additionally, key challenges associated with clinical development and commercialization of smart theranostic contact lenses are discussed, to optimize diagnostic and therapeutic interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!