Purpose: This study aimed to develop a nursing simulation learning module for coronavirus disease 2019 (COVID-19) patient-care and examine its effects on clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient care for nursing students.

Methods: A non-equivalent control group pre- and post-test design was employed. The study participants included 47 nursing students (23 in the experimental group and 24 in the control group) from G City. A simulation learning module for COVID-19 patient-care was developed based on the Jeffries simulation model. The module consisted of a briefing, simulation practice, and debriefing. The effects of the simulation module were measured using clinical reasoning competence, clinical competence, performance confidence, and anxiety in COVID-19 patient-care. Data were analyzed using χ²-test, Fisher's exact test, t-test, Wilcoxon signed-rank test, and Mann-Whitney U test.

Results: The levels of clinical reasoning competence, clinical competence, and performance confidence of the experimental group were significantly higher than that of the control group, and the level of anxiety was significantly low after simulation learning.

Conclusion: The nursing simulation learning module for COVID-19 patient-care is more effective than the traditional method in terms of improving students' clinical reasoning competence, clinical competence, and performance confidence, and reducing their anxiety. The module is expected to be useful for educational and clinical environments as an effective teaching and learning strategy to empower nursing competency and contribute to nursing education and clinical changes.

Download full-text PDF

Source
http://dx.doi.org/10.4040/jkan.22130DOI Listing

Publication Analysis

Top Keywords

clinical reasoning
20
reasoning competence
20
competence clinical
20
clinical competence
20
competence performance
20
performance confidence
20
covid-19 patient-care
20
simulation learning
16
learning module
16
nursing simulation
12

Similar Publications

Background: Global aphasia is a severe communication disorder affecting all language modalities, commonly caused by stroke. Evidence as to whether the functional communication of people with global aphasia (PwGA) can improve after speech and language therapy (SLT) is limited and conflicting. This is partly because cognition, which is relevant to participation in therapy and implicated in successful functional communication, can be severely impaired in global aphasia.

View Article and Find Full Text PDF

Background And Objective: Despite significant investments in the normalization and the standardization of Electronic Health Records (EHRs), free text is still the rule rather than the exception in clinical notes. The use of free text has implications in data reuse methods used for supporting clinical research since the query mechanisms used in cohort definition and patient matching are mainly based on structured data and clinical terminologies. This study aims to develop a method for the secondary use of clinical text by: (a) using Natural Language Processing (NLP) for tagging clinical notes with biomedical terminology; and (b) designing an ontology that maps and classifies all the identified tags to various terminologies and allows for running phenotyping queries.

View Article and Find Full Text PDF

Cognitive biases in osteopathic diagnosis: a mixed study among French osteopaths.

Diagnosis (Berl)

January 2025

Scientific and Osteopathic Research Department, Institut de Formation en Ostéopathie du Grand Avignon IFO-GA, Avignon, France.

Objectives: Although cognitive biases are one of the most frequent causes of diagnostic errors, their influence remains underestimated in allied health professions, especially in osteopathy. Yet, a part of osteopathic clinical reasoning and diagnosis rely on the practitioner's intuition and subjective haptic perceptions. The aim of this study is to highlight links between the cognitive biases perceived by the practitioner to understand cognitive patterns during osteopathic diagnosis, and to suggest debiasing strategies.

View Article and Find Full Text PDF

Background: Clinical reasoning is a professional capability required for clinical practice. In preclinical training, clinical reasoning is often taught implicitly, and feedback is focused on discrete outcomes of decision-making. This makes it challenging to provide meaningful feedback on the often-hidden metacognitive process of reasoning to address specific clinical reasoning difficulties.

View Article and Find Full Text PDF

The delivery of accurate diagnoses is crucial in healthcare and represents the gateway to appropriate and timely treatment. Although recent large language models (LLMs) have demonstrated impressive capabilities in few-shot or zero-shot learning, their effectiveness in clinical diagnosis remains unproven. Here we present MedFound, a generalist medical language model with 176 billion parameters, pre-trained on a large-scale corpus derived from diverse medical text and real-world clinical records.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!