Background: The left dorsolateral prefrontal cortex is a prime target for repetitive transcranial magnetic stimulation (TMS) to treat neuropsychiatric disorders; thus, abundant efficacy data from controlled trials are available. A cross-diagnostic meta-analysis was conducted to identify the symptom domains susceptible to repetitive TMS to the left dorsolateral prefrontal cortex.
Methods: This systematic review and meta-analysis investigated the effects of repetitive TMS to the left dorsolateral prefrontal cortex on neuropsychiatric symptoms presenting across diagnoses. We searched PubMed, MEDLINE, Embase, Web of Science, Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, and WHO International Clinical Trials Registry Platform for randomised and sham controlled trials published from inception to Aug 17, 2022. Included studies assessed symptoms using clinical measures and reported sufficient data to calculate effect sizes pooled with a random effects model. Two independent reviewers conducted screening and used the Cochrane risk-of-bias tool for quality assessment. Summary data were extracted from published reports. The main outcome was the therapeutic effects of repetitive TMS of the left dorsolateral prefrontal cortex on distinct symptom domains. This study is registered with PROSPERO (CRD42021278458).
Findings: Of 9056 studies identified (6704 from databases and 2352 from registers), 174 were included in the analysis including 7905 patients. 163 of 174 studies reported gender data; 3908 (52·35%) of 7465 patients were male individuals, and 3557 (47·65%) were female individuals. Mean age was 44·63 years (range 19·79-72·80). Ethnicity data were mostly not available. Effect size was large for craving (Hedges'g -0·803 [95% CI -1·099 to -0·507], p<0·0001; I=82·40%), medium for depressive symptoms (-0·725 [-0·889 to -0·561], p<0·0001; I=85·66%), small for anxiety, obsessions or compulsions, pain, global cognition, declarative memory, working memory, cognitive control, and motor coordination (Hedges'g -0·198 to -0·491), and non-significant for attention, suicidal ideation, language, walking ability, fatigue, and sleep.
Interpretation: The cross-diagnostic meta-analysis shows the efficacy of repetitive TMS of the left dorsolateral prefrontal cortex on distinct symptom domains, providing a novel framework for assessing target or efficacy interactions of repetitive TMS, and informing personalised applications for conditions for which regular trials are uninformative.
Funding: The University Grants Committee of Hong Kong and the Mental Health Research Center, The Hong Kong Polytechnic University.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S2215-0366(23)00026-3 | DOI Listing |
Trials
January 2025
Department of Neurology, Universitätsmedizin Greifswald, Fleischmannstraße 6, Greifswald, 17489, Germany.
Background: Postoperative delirium (POD) is the most common neurological adverse event among elderly patients undergoing surgery. POD is associated with an increased risk for postoperative complications, long-term cognitive decline, an increase in morbidity and mortality as well as extended hospital stays. Delirium prevention and treatment options are currently limited.
View Article and Find Full Text PDFIndividuals with general anxiety disorder (GAD) have an impaired future-oriented processing and altered reward perception, which might involve the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC). Twenty-nine adults with GAD performed the balloon analogue risk-taking task (BART) and delay discounting task (DDT) during five sessions of transcranial direct current stimulation (tDCS) with different stimulation conditions. The stimulation conditions were: anodal dlPFC (F3)/cathodal vmPFC (Fp2), anodal vmPFC (Fp2)/cathodal dlPFC (F3), anodal dlPFC (F3)/cathodal right shoulder, anodal vmPFC (Fp2)/cathodal left shoulder, and sham stimulation.
View Article and Find Full Text PDFFront Psychol
December 2024
Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche en Neurosciences de Lyon U1028 UMR5292, PSYR2, Bron, France.
Background: Anhedonia, including social, physical, and less-known, olfactory, stands as a core symptom of major depressive disorder (MDD). At the neurobiological level, anhedonia has been associated with abnormal activity within the reward system, suggesting a key role for dopamine. Repetitive Transcranial Magnetic Stimulation (rTMS) has emerged as an innovative treatment for alleviating depressive symptoms.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.
Individuals with ADHD struggle with time perception. The ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are two distinct cortical areas that are involved in the psychopathology of ADHD, including time perception. In the present study, we aimed to explore if modulation of the excitability of these areas with non-invasive brain stimulation alters time perception in ADHD.
View Article and Find Full Text PDFJ Child Psychol Psychiatry
December 2024
Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
Background: Neuroimaging studies have identified brain structural and functional alterations in adolescents with major depressive disorder (MDD); however, the results are inconsistent, and whether patients exhibit spatially convergent structural and functional brain abnormalities remains unclear.
Methods: We conducted voxel-wise meta-analysis of voxel-based morphometry (VBM) and resting-state functional studies, respectively, to identify regional gray matter volume (GMV) and brain activity alterations in adolescent MDD patients. Multimodal analysis was performed to examine the overlap of regional GMV and brain activity alterations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!