Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurodevelopmental disorder caused by maternal duplications of this region. Autism and epilepsy are key features of Dup15q. UBE3A, which encodes an E3 ubiquitin ligase, is likely a major driver of Dup15q because UBE3A is the only imprinted gene expressed solely from the maternal allele. Nevertheless, the exact role of UBE3A has not been determined. To establish whether UBE3A overexpression is required for Dup15q neuronal deficits, we generated an isogenic control line for a Dup15q patient-derived induced pluripotent stem cell line. Dup15q neurons exhibited hyperexcitability compared with control neurons, and this phenotype was generally prevented by normalizing UBE3A levels using antisense oligonucleotides. Overexpression of UBE3A resulted in a profile similar to that of Dup15q neurons except for synaptic phenotypes. These results indicate that UBE3A overexpression is necessary for most Dup15q cellular phenotypes but also suggest a role for other genes in the duplicated region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147551PMC
http://dx.doi.org/10.1016/j.stemcr.2023.02.002DOI Listing

Publication Analysis

Top Keywords

dup15q
9
role ube3a
8
dup15q ube3a
8
ube3a overexpression
8
dup15q neurons
8
ube3a
7
ube3a autism
4
autism epilepsy-related
4
epilepsy-related dup15q
4
dup15q syndrome
4

Similar Publications

Clinical and Cytogenetic Impact of Maternal Balanced Double Translocation: A Familial Case of 15q11.2 Microduplication and Microdeletion Syndromes with Genetic Counselling Implications.

Genes (Basel)

November 2024

Laboratório de Citogenética Clínica, Centro de Genética Médica, Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira-Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil.

Background: Balanced chromosomal translocations occur in approximately 0.16 to 0.20% of live births.

View Article and Find Full Text PDF

This study describes a protocol to assess a novel workflow called Epi-Genomic Newborn Screening (EpiGNs) on 100,000 infants from the state of Victoria, Australia. The workflow uses a first-tier screening approach called methylation-specific quantitative melt analysis (MS-QMA), followed by second and third tier testing including targeted methylation and copy number variation analyzes with droplet digital PCR, EpiTYPER system and low-coverage whole genome sequencing. EpiGNs utilizes only two 3.

View Article and Find Full Text PDF

Multiscale spatio-temporal dynamics of UBE3A gene in brain physiology and neurodevelopmental disorders.

Neurobiol Dis

October 2024

IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089, MI, Italy; CNR - Institute of Neuroscience, Section of Milano, via Manzoni 56, Rozzano 20089, MI, Italy. Electronic address:

The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.

View Article and Find Full Text PDF

Glial expression of Drosophila UBE3A causes spontaneous seizures that can be modulated by 5-HT signaling.

Neurobiol Dis

October 2024

Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States of America; Alabama Life Research Institute, University of Alabama, Tuscaloosa, AL, United States of America; Center for Convergent Bioscience and Medicine, University of Alabama, Tuscaloosa, AL, United States of America. Electronic address:

Misexpression of the E3 ubiquitin ligase gene UBE3A is thought to contribute to a range of neurological disorders. In the context of Dup15q syndrome, additional genomic copies of UBE3A give rise to the autism, muscle hypotonia and spontaneous seizures characteristics of the disorder. In a Drosophila model of Dup 15q syndrome, it was recently shown that glial-driven expression of the UBE3A ortholog dube3a led to a "bang-sensitive" phenotype, where mechanical shock triggers convulsions, suggesting glial dube3a expression contributes to hyperexcitability in flies.

View Article and Find Full Text PDF

Cell-type-specific effects of autism-associated 15q duplication syndrome in the human brain.

Am J Hum Genet

August 2024

Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA. Electronic address:

Recurrent copy-number variation represents one of the most well-established genetic drivers in neurodevelopmental disorders, including autism spectrum disorder. Duplication of 15q11-q13 (dup15q) is a well-described neurodevelopmental syndrome that increases the risk of autism more than 40-fold. However, the effects of this duplication on gene expression and chromatin accessibility in specific cell types in the human brain remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!