Gelatin-based electrospun fibers are promising materials for food packaging but suffer from high hydrophilicity and weak mechanical properties. To overcome these limitations, in the current study, gelatin-based nanofibers were reinforced by using oxidized xanthan gum (OXG) as a crosslinking agent. The nanofibers' morphology was investigated through SEM, and the observations showed that the fibers' diameter was decreased by enhancing OXG content. The resultant fibers with more OXG content exhibited high tensile stress so the optimal sample obtained showed a tensile stress of 13.24 ± 0.76 MPa, which is up to 10 times more than neat gelatin fiber. Adding OXG to gelatin fibers reduced water vapor permeability, water solubility, and moisture content properties while increasing thermal stability and porosity. Additionally, the nanofibers containing propolis displayed a homogenous morphology with high antioxidant and antibacterial activities. In general, the findings suggested that the designed fibers could be used as a matrix for active food packaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.135806 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:
Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.
View Article and Find Full Text PDFFood Chem
December 2024
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Shandong Ensign Industry Co., Ltd., Weifang, Shandong 262409, China. Electronic address:
Gelatin, a natural and edible polymer, has attracted wide attention for use in food and edible packaging applications. However, its inadequate properties, especially poor flexibility, limit its broader utilization. Hybridizing different polymers is a promising strategy to achieve enhanced properties.
View Article and Find Full Text PDFGels
November 2024
Biopolymer Research & Engineering Laboratory (BIOPREL), Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de Los Andes, Santiago 7550000, Chile.
Gelatin is a natural hydrocolloid with excellent film-forming properties, high processability, and tremendous potential in the field of edible coatings and food packaging. However, its reinforcing by materials such as cellulose nanocrystals (CNC) is often necessary to improve its mechanical behavior, including shape memory properties. Since the interaction between these polymers is complex and its mechanism still remains unclear, this work aimed to study the effect of low concentrations of CNC (2, 6, and 10 weight%) on the molecular organization, thermomechanical, and shape memory properties in mammalian gelatin-based composite films at low moisture content (~10 weight% dry base).
View Article and Find Full Text PDFGels
November 2024
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
Due to the frequent occurrence of food safety problems in recent years, healthy diets are gradually receiving worldwide attention. Chemical pigments are used in smart food packaging because of their bright colors and high visibility. However, due to shortcomings such as carcinogenicity, people are gradually looking for natural pigments to be applied in the field of smart food packaging.
View Article and Find Full Text PDFPLoS One
December 2024
Industry Planning Division, Chengdu Municipal Bureau of Economic and Information Technology, Chengdu, China.
Effectively regulating the excessive consumption of sugar-sweetened beverages (SSBs) has been an important task for public health authorities around the world. The rapid increase in SSB consumption in China necessitates robust regulations. This study employed a choice experiment to simulate the market scenario in which a text warning label was presented on SSBs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!