Gold nanoclusters exhibit attractive properties owing to their excellent biocompatibility and strong photostability in the biomedical domain. In this research, cysteine-protected fluorescent gold nanoclusters (Cys-Au NCs) were synthesized decomposing Au(i)-thiolate complexes for the detection of Fe and ascorbic acid in a bidirectional "on-off-on" mode. Meanwhile, the detailed characterization confirmed that the mean particle size of the prepared fluorescent probe was 2.43 nm and showed a fluorescence quantum yield of 3.31%. In addition, our results indicate that the fluorescence probe for ferric ions exhibited a broad detection scope ranging from 0.1 to 2000 μM and excellent selectivity. The as-prepared Cys-Au NCs/Fe was demonstrated to be an ultrasensitive and selective nanoprobe for the detection of ascorbic acid. This study indicated that the "on-off-on" fluorescent probes Cys-Au NCs held a promising application for the bidirectional detection of Fe and ascorbic acid. Furthermore, our novel "on-off-on" fluorescent probes provided insight into the rational design of thiolate-protected gold nanoclusters for biochemical analysis of high selectivity and sensitivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990083 | PMC |
http://dx.doi.org/10.1039/d3ra00410d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!