Heterogeneity of antibody-secreting cells infiltrating autoimmune tissues.

Front Immunol

Translational Research in Autoimmunity and Inflammation Group (TRAIG), Translational Innovation in Medicine and Complexity (TIMC), University Grenoble-Alpes, CNRS Unité mixte de recherche (UMR) 5525, Grenoble, France.

Published: March 2023

The humoral response is frequently dysfunctioning in autoimmunity with a frequent rise in total serum immunoglobulins, among which are found autoantibodies that may be pathogenic by themselves and/or propagate the inflammatory reaction. The infiltration of autoimmune tissues by antibody-secreting cells (ASCs) constitutes another dysfunction. The known high dependency of ASCs on the microenvironment to survive combined to the high diversity of infiltrated tissues implies that ASCs must adapt. Some tissues even within a single clinical autoimmune entity are devoid of infiltration. The latter means that either the tissue is not permissive or ASCs fail to adapt. The origin of infiltrated ASCs is also variable. Indeed, ASCs may be commonly generated in the secondary lymphoid organ draining the autoimmune tissue, and home at the inflammation site under the guidance of specific chemokines. Alternatively, ASCs may be generated locally, when ectopic germinal centers are formed in the autoimmune tissue. Alloimmune tissues with the example of kidney transplantation will also be discussed own to their high similarity with autoimmune tissues. It should also be noted that antibody production is not the only function of ASCs, since cells with regulatory functions have also been described. This article will review all the phenotypic variations indicative of tissue adaptation described so for at the level of ASC-infiltrating auto/alloimmune tissues. The aim is to potentially define tissue-specific molecular targets in ASCs to improve the specificity of future autoimmune treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989216PMC
http://dx.doi.org/10.3389/fimmu.2023.1111366DOI Listing

Publication Analysis

Top Keywords

autoimmune tissues
12
ascs
9
antibody-secreting cells
8
autoimmune tissue
8
autoimmune
7
tissues
7
heterogeneity antibody-secreting
4
cells infiltrating
4
infiltrating autoimmune
4
tissues humoral
4

Similar Publications

Objective: To explore the clinical characteristics and risk factors for adverse outcomes in patients with Sjögren's Syndrome-associated pulmonary arterial hypertension (SS-PAH).

Methods: A retrospective analysis was conducted on SS-PAH patients diagnosed by right heart catheterization (RHC) between March 2013 and March 2024 across four Chinese medical centers. Patients were categorized into primary SS-PAH (pSS-PAH) and overlap SS-PAH, based on the presence of additional autoimmune diseases.

View Article and Find Full Text PDF

Background: Hemophagocytic lymphohistiocytosis (HLH) is an immunologic syndrome characterized by excessive inflammation and tissue injury due to uncontrolled activation of the phagocytic system. The underlying mechanism is a lack of downregulation of activated macrophages and lymphocytes by natural killer and T cells. Unfortunately, the diagnosis is often delayed or missed due to the rarity of the disease, decreased awareness, and clinical picture variability.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation, tissue damage, and fibrosis, significantly affecting the quality of life. While there are currently some effective treatments available, they often come with side effects. There is an urgent need to find new treatments that can further improve therapeutic outcomes and reduce side effects.

View Article and Find Full Text PDF

Deep learning MRI models for the differential diagnosis of tumefactive demyelination versus -wildtype glioblastoma.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (GMC, MM, YN, BJE), Department of Quantitative Health Sciences (PAD, MLK, JEEP), Department of Neurology (CBM, JAS, MWR, FSG, HKP, DHL, WOT), Department of Neurosurgery (TCB), Department of Laboratory Medicine and Pathology (RBJ), and Center for Multiple Sclerosis and Autoimmune Neurology (WOT), Mayo Clinic, Rochester, MN, USA; Dell Medical School (MFE), University of Texas, Austin, TX, USA.

Background And Purpose: Diagnosis of tumefactive demyelination can be challenging. The diagnosis of indeterminate brain lesions on MRI often requires tissue confirmation via brain biopsy. Noninvasive methods for accurate diagnosis of tumor and non-tumor etiologies allows for tailored therapy, optimal tumor control, and a reduced risk of iatrogenic morbidity and mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!