Investigation of cationic ring-opening polymerization of 2-oxazolines in the "green" solvent dihydrolevoglucosenone.

Beilstein J Org Chem

Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilans-University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany.

Published: February 2023

For about the last ten years, poly(2-oxazoline)s have attracted significant attention as potential material for biomedical applications in, e.g., drug delivery systems, tissue engineering and more. Commonly, the synthesis of poly(2-oxazoline)s involves problematic organic solvents that are not ideal from a safety and sustainability point of view. In this study, we investigated the cationic ring-opening polymerization of 2-ethyl-2-oxazoline and 2-butyl-2-oxazoline using a variety of initiators in the recently commercialized "green" solvent dihydrolevoglucosenone (DLG). Detailed H NMR spectroscopic analysis was performed to understand the influence of the temperature and concentration on the polymerization process. Size exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were performed to determine the molar mass of the resulting polymers. Our work shows clearly that the solvent is not inert under the conditions typically used for the cationic ring-opening polymerization, as evidenced by side products and limited control over the polymerization. However, we could establish that the use of the 2-ethyl-3-methyl-2-oxazolinium triflate salt as an initiator at 60 °C results in polymers with a relatively narrow molar mass distribution and a reasonable control over the polymerization process. Further work will be necessary to establish whether a living polymerization can be achieved by additional adjustments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989667PMC
http://dx.doi.org/10.3762/bjoc.19.21DOI Listing

Publication Analysis

Top Keywords

cationic ring-opening
12
ring-opening polymerization
12
"green" solvent
8
solvent dihydrolevoglucosenone
8
polymerization process
8
molar mass
8
control polymerization
8
polymerization
7
investigation cationic
4
polymerization 2-oxazolines
4

Similar Publications

A straightforward and effective approach was introduced for creating a multifunctional cellulose fabric in this paper. The epoxy groups in epoxidized soybean oil participated in ring-opening reactions with hydroxyl groups present in cellulose fibers and amino groups found in polyhexamethylene guanidine hydrochloride, respectively, under alkaline conditions. Polyhexamethylene guanidine hydrochloride could introduce cationic groups, while epoxidized soybean oil could contribute hydrophobic alkane chains.

View Article and Find Full Text PDF

Among the various studies on CO2 utilization, the sustainable and cost-effective fixation of CO2 into cyclic carbonates remains one of the most intriguing subjects. To this end, a novel type of  composite dicationic ionic liquid material, DIL@PDIL, was developed. This composite consists of a dicationic ionic liquid (DIL), DMAP[TMGH]Br, supported on a polymeric dicationic ionic liquid (PDIL), P-DVB/Im[TMGH]Br.

View Article and Find Full Text PDF

Poly(2-Hydroxymethyl-2-oxazoline) as Super-hydrophilic Antifouling Polymer.

Angew Chem Int Ed Engl

December 2024

Ghent University, Department of Organic CHemistry, Krijgslaan 281 S4, 9000, Ghent, BELGIUM.

Non-ionic "super-hydrophilic" polymers generally possess non-fouling characteristics and can suppress non-specific interactions with blood proteins. Here, we revitalized a protected alcohol functionalized 2-oxazoline monomer, 2-acetoxymethyl-2-oxazoline and explored the possibility of making "super-hydrophilic" poly(2-oxazoline)s for biomedical applications. The synthesis of the 2-acetoxymethyl-2-oxazoline monomer and its cationic ring-opening homopolymerization and copolymerization kinetics are reported.

View Article and Find Full Text PDF

Photoredox-Catalyzed Regioselective 1,3-Alkoxypyridylation of -Difluorocyclopropanes.

Org Lett

December 2024

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering Henan Normal University, Xinxiang, Henan 453007, China.

Difluoromethylene and pyridine cores are very important structural units in medicinal chemistry. Herein, we report the development of photoredox-catalyzed ring-opening and 1,3-alkoxypyridylation of -difluorinated cyclopropanes using 4-cyanopyrines and alcohols, employing cyclopropane radical cations as the key intermediate. The reaction exhibits high regioselectivity under mild conditions and can also be practiced on gram-scale synthesis, telescoped reaction, and late-stage functionalization of biological molecules.

View Article and Find Full Text PDF

The synthesis of 2-pyridinemethanamido borohydride complexes of yttrium and neodymium was achieved through the deprotonation of the protio-ligand 2-pyridinemethanamine CHRN-C(CH)R-NH(2,6-PrCH), denoted as PyAH (with PyAH1: R = R = H; PyAH2: R = CH, R = H; PyAH3: R = C(CH)N-(2,6-PrCH), R = CH), in the presence of trisborohydride RE(BH)(THF) (RE = Y and Nd) as a precursor and a base. The isolation of various molecular structures, nine of which were structurally characterized by X-ray diffraction analysis, was achieved and revealed to depend not only on (i) the nature of the 2-pyridinemethanamido ligand and (ii) the rare-earth element but also on (iii) the reaction conditions, notably the type of base used. These include seven mono-substituted species, eventually also comprising the cation derived from the base reagent, such as [(PyA1)Y(BH)][Mg(THF)] (1Y), [(PyA1)Nd(BH)Mg(PyA1)](THF) (1Nd), (PyA1)Nd(BH)(THF) (1'Nd), [(PyA1)Nd(THF)(BH)(μ-BH)] (1''Nd), [(PyA2)Nd(BH)][Mg(THF)] (3Nd), (PyA2)Nd(BH)(THF) (3'Nd) and (PyA3)Nd(BH) (4Nd), as well as two bis-substituted complexes (PyA1)Y(BH) (2Y) and (PyA1)Nd(BH) (2Nd).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!