Objective: The objective of this study is to investigate whether quantitatively measured infrapatellar fat pad (IPFP) signal intensity alteration is associated with joint effusion-synovitis in people with knee osteoarthritis (OA) over two years.
Methods: Among 255 knee OA patients, IPFP signal intensity alteration represented by four measurement parameters [standard deviation of IPFP signal intensity (IPFP sDev), upper quartile value of IPFP high signal intensity region (IPFP UQ (H)), ratio of IPFP high signal intensity region volume to whole IPFP volume (IPFP percentage (H)), and clustering factor of IPFP high signal intensity (IPFP clustering factor (H))] was measured quantitatively at baseline and two-year follow-up using magnetic resonance imaging (MRI). Effusion-synovitis of the suprapatellar pouch and other cavities were measured both quantitatively and semi-quantitatively as effusion-synovitis volume and effusion-synovitis score at baseline and two-year follow-up using MRI. Mixed effects models assessed the associations between IPFP signal intensity alteration and effusion-synovitis over two years.
Results: In multivariable analyses, all four parameters of IPFP signal intensity alteration were positively associated with total effusion-synovitis volume and effusion-synovitis volumes of the suprapatellar pouch and of other cavities over two years (all P<0.05). They were also associated with the semi-quantitative measure of effusion-synovitis except for IPFP percentage (H) with effusion-synovitis in other cavities.
Conclusion: Quantitatively measured IPFP signal intensity alteration is positively associated with joint effusion-synovitis in people with knee OA, suggesting that IPFP signal intensity alteration may contribute to effusion-synovitis and a coexistent pattern of these two imaging biomarkers could exist in knee OA patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573405619666230310093402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!