Effective harvest of electrochemical energy from insulating compounds serves as the key to unlocking the potential capacity from many materials that otherwise could not be exploited for energy storage. Herein, an effective strategy is proposed by employing LiCoO, a widely commercialized positive electrode material in Li-ion batteries, as an efficient redox mediator to catalyze the decomposition of NaCO an intercalating mechanism. Differing from traditional redox mediation processes where reactions occur on the limited surface sites of catalysts, the electrochemically delithiated LiCoO forms NaLiCoO crystals, which act as a cation intercalating catalyzer that directs Na insertion-extraction and activates the reaction of NaCO with carbon. Through altering the route of the mass transport process, such redox centers are delocalized throughout the bulk of LiCoO, which ensures maximum active reaction sites. The decomposition of NaCO thus accelerated significantly reduces the charging overpotential in Na-CO batteries; meanwhile, Na compensation can also be achieved for various Na-deficient cathode materials. Such a surface-induced catalyzing mechanism for conversion-type reactions, realized cation intercalation chemistry, expands the boundary for material discovery and makes those conventionally unfeasible a rich source to explore for efficient utilization of chemical energy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c11029DOI Listing

Publication Analysis

Top Keywords

cation intercalating
8
conversion-type reactions
8
decomposition naco
8
exploiting cation
4
intercalating chemistry
4
chemistry catalyze
4
catalyze conversion-type
4
reactions batteries
4
batteries effective
4
effective harvest
4

Similar Publications

Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.

View Article and Find Full Text PDF

In this study, the interactions between three quaternary ammonium salt (QAS) cationic surfactants with different branched-chain lengths (TMBAC, TEBAC, and TBBAC) and DNA are investigated by UV-vis absorption, fluorescence and CD spectroscopy, viscosity method, and gel electrophoresis. Berberine hydrochloride (BR) is utilized as a fluorescent probe. The three interaction modes and strengths are compared.

View Article and Find Full Text PDF

Poly(triazine imide) (PTI) materials, a class of layered graphitic carbon nitrides, have garnered significant attention for their unique electronic, thermal, and catalytic properties. These properties can be adjusted through postsynthesis treatments. However, the influence of these treatments on the layer stacking modes and local structures within PTI remains largely unexplored.

View Article and Find Full Text PDF

Hollandite-type α-MnO exhibits exceptional promise in current industrial applications and in advancing next-generation green energy technologies, such as multivalent (Mg, Ca, and Zn) ion battery cathodes and aerobic oxidation catalysts. Considering the slow diffusion of multivalent cations within α-MnO tunnels and the catalytic activity at edge surfaces, ultrasmall α-MnO particles with a lower aspect ratio are expected to unlock the full potential. In this study, ultrasmall α-MnO (<10 nm) with a low aspect ratio (c/a ≈ 2) is synthesized using a newly developed alcohol solution process.

View Article and Find Full Text PDF

Unprecedented Ultraviolet Circularly Polarized Light-Dependent Anomalous Photovoltaics in Chiral Hybrid Perovskites.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Circularly Polarized Light (CPL)-dependent anomalous photovoltaic effect (APVE), characterized by light helicity-manipulated steady photocurrent and above-bandgap photovoltage, has demonstrated significant potential in the fields of photoelectronic and photovoltaics. However, exploiting CPL-dependent APVE in chiral hybrid perovskites, a promising family with intrinsic chiroptical activity and non-centrosymmetric structure, remains challenging. Here, leveraging the flexible structural design of chiral alternating cations intercalation-type perovskites, CPL-dependent APV, for the first time, is achieved in chiral perovskites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!