Background: Xanthomonas campestris pv. campestris (Xcc) is an important seed-borne plant pathogenic bacteria that can cause a serious threat to cruciferous crops. Bacteria can enter into the viable but non-culturable (VBNC) state under stress conditions, and cause potential risks to agricultural production because the VBNC bacterial cells will evade culture-based detection. However, little is known about the mechanism of VBNC. Our previous study showed that Xcc could be induced into VBNC state by copper ion (Cu).
Results: Here, RNA-seq was performed to explore the mechanism of VBNC state. The results indicated that expression profiling was changed dramatically in the different VBNC stages (0 d, 1 d, 2 d and 10 d). Moreover, metabolism related pathways were enriched according to COG, GO and KEGG analysis of differentially expressed genes (DEGs). The DEGs associated with cell motility were down-regulated, whereas pathogenicity related genes were up-regulated. This study revealed that the high expression of genes related to stress response could trigger the active cells to VBNC state, while the genes involved in transcription and translation category, as well as transport and metabolism category, were ascribed to maintaining the VBNC state.
Conclusion: This study summarized not only the related pathways that might trigger and maintain VBNC state, but also the expression profiling of genes in different survival state of bacteria under stress. It provided a new kind of gene expression profile and new ideas for studying VBNC state mechanism in X. campestris pv. campestris.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999588 | PMC |
http://dx.doi.org/10.1186/s12864-023-09200-z | DOI Listing |
Anal Chem
January 2025
Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada.
is a leading foodborne pathogen that may enter a viable but nonculturable (VBNC) state to survive under environmental stresses, posing a significant health concern. VBNC cells can evade conventional culture-based detection methods, while viability-based assays are usually hindered by low sensitivity, insufficient specificity, or technical challenges. There are limited studies analyzing VBNC cells at the single-cell level for accurate detection and an understanding of their unique behavior.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland.
Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.
View Article and Find Full Text PDFFront Microbiol
December 2024
Meat Safety and Quality Research Unit, U.S. Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, NE, United States.
Recent application of whole genome sequencing in the investigation of foodborne illness outbreaks has facilitated the identification of Reoccurring, Emerging, or Persistent (REP) bacterial strains that have caused illnesses over extended periods of time. Here, the complete genomes of two O157:H7 (EcO157) outbreak strains belonging to REPEXH01 and REPEXH02, respectively, were sequenced and annotated. Comparative genomics and phenotypic analyses were carried out to identify REP-associated traits.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.
Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia.
Campylobacter jejuni, a major cause of foodborne zoonotic infections worldwide, shows a paradoxical ability to survive despite its susceptibility to environmental and food-processing stressors. This resilience is likely due to the bacterium entering a viable but non-culturable state, often within biofilms, or even initiating biofilm formation as a survival strategy. This study presents an innovative application of NanoLuc bioluminescence to accurately monitor the development of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!