The urgent demand for scalable, potent, color variable, and comfortable antimicrobial textiles as personal protection equipment (PPE) to help reduce infection transmission in hospitals and healthcare facilities has significantly increased since the start of the COVID-19 pandemic. Here, we explored photodynamic antimicrobial polyethylene terephthalate/cotton (TC) blended fabrics comprised of photosensitizer-conjugated cotton fibers and polyethylene terephthalate (PET) fibers dyed with disperse dyes. A small library of TC blended fabrics was constructed wherein the PET fibers were embedded with traditional disperse dyes dominating the fabric color, thereby enabling variable color expression, while the cotton fibers were covalently coupled with the photosensitizer thionine acetate as the microbicidal agent. Physical (SEM, CLSM, TGA, XPS and mechanical strength) and colorimetric (K/S and CIELab values) characterization methods were employed to investigate the resultant fabrics, and photooxidation studies with DPBF demonstrated the ability of these materials to generate reactive oxygen species (i.e., singlet oxygen) upon visible light illumination. The best results demonstrated a photodynamic inactivation of 99.985% (~ 3.82 log unit reduction, P = 0.0021) against Gram-positive S. aureus, and detection limit inactivation (99.99%, 4 log unit reduction, P ≤ 0.0001) against Gram-negative E. coli upon illumination with visible light (60 min; ~ 300 mW/cm; λ ≥ 420 nm). Enveloped human coronavirus 229E showed a photodynamic susceptibility of ~ 99.99% inactivation after 60 min illumination (400-700 nm, 65 ± 5 mW/cm). The presence of the disperse dyes on the fabrics showed no significant effects on the aPDI results, and furthermore, appeared to provide the photosensitizer with some measure of protection from photobleaching, thus improving the photostability of the dual-dyed fabrics. Taken together, these results suggest the feasibility of low cost, scalable and color variable thionine-conjugated TC blended fabrics as potent self-disinfecting textiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998264PMC
http://dx.doi.org/10.1007/s43630-023-00398-1DOI Listing

Publication Analysis

Top Keywords

blended fabrics
16
disperse dyes
12
photodynamic antimicrobial
8
antimicrobial polyethylene
8
polyethylene terephthalate
8
color variable
8
cotton fibers
8
pet fibers
8
visible light
8
log unit
8

Similar Publications

Background A 92-year-old retired seamstress, born in 1932, with 12 years of education, had been residing in a long-term care facility since 2019, following a fall and hip fracture. Post-admission, her cognitive function gradually declined and she did not participate in residential home activities. This study explores the outcomes of an 8-month, multisensory remediation program.

View Article and Find Full Text PDF

Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.

View Article and Find Full Text PDF

Recyclable PVA/starch/TiCT MXene nanocomposite films with superior mechanical and barrier properties.

Int J Biol Macromol

January 2025

School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom. Electronic address:

The fabrication of eco-friendly and high-performance composite materials has gained significant attention for multifunctional applications. Polyvinyl alcohol (PVA)/starch composite films containing varying amounts of TiCT MXene (2.5-10 wt%) were produced using a simple casting method.

View Article and Find Full Text PDF

Ibuprofen sodium (IBP) is a commonly used NSAID for multiple pain conditions. However, despite its extensive use, it is associated with multiple GIT adverse effects after oral administration. In the present study, we have fabricated thermoresponsive gel depot using Poly (N-vinylcaprolactam) and sodium alginate as polymers.

View Article and Find Full Text PDF

A dual thermo/pH-sensitive hydrogel as 5-Fluorouracil carrier for breast cancer treatment.

Anticancer Drugs

January 2025

Department of Thoracic Surgery, Affiliated Hospital of Shaoxing University, The Shaoxing Municipal Hospital, Shaoxing, Zhejiang, China.

Intelligent hydrogels are promising in constructing scaffolds for the controlled delivery of drugs. Here, a dual thermo- and pH-responsive hydrogel called PCG [poly (N-isopropyl acrylamide-co-itaconic acid)/chitosan/glycerophosphate (PNI/CS/GP)] was established as the carrier of 5-fluorouracil (5-FU) for triple-negative breast cancer (TNBC) treatment. The PCG hydrogel was fabricated by blending synthesized [poly (N-isopropyl acrylamide-co-itaconic acid), pNIAAm-co-IA, PNI] with CS in the presence of GP as a crosslinking agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!