A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Major cell-types in multiomic single-nucleus datasets impact statistical modeling of links between regulatory sequences and target genes. | LitMetric

Epigenomic profiling, including ATACseq, is one of the main tools used to define enhancers. Because enhancers are overwhelmingly cell-type specific, inference of their activity is greatly limited in complex tissues. Multiomic assays that probe in the same nucleus both the open chromatin landscape and gene expression levels enable the study of correlations (links) between these two modalities. Current best practices to infer the regulatory effect of candidate cis-regulatory elements (cCREs) in multiomic data involve removing biases associated with GC content by generating null distributions of matched ATACseq peaks drawn from different chromosomes. This strategy has been broadly adopted by popular single-nucleus multiomic workflows such as Signac. Here, we uncovered limitations and confounders of this approach. We found a strong loss of power to detect a regulatory effect for cCREs with high read counts in the dominant cell-type. We showed that this is largely due to cell-type-specific trans-ATACseq peak correlations creating bimodal null distributions. We tested alternative models and concluded that physical distance and/or the raw Pearson correlation coefficients are the best predictors for peak-gene links when compared to predictions from Epimap (e.g. CD14 area under the curve [AUC] = 0.51 with the method implemented in Signac vs. 0.71 with the Pearson correlation coefficients) or validation by CRISPR perturbations (AUC = 0.63 vs. 0.73).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998442PMC
http://dx.doi.org/10.1038/s41598-023-31040-wDOI Listing

Publication Analysis

Top Keywords

null distributions
8
pearson correlation
8
correlation coefficients
8
major cell-types
4
multiomic
4
cell-types multiomic
4
multiomic single-nucleus
4
single-nucleus datasets
4
datasets impact
4
impact statistical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!