Activated carbon produced from biomass exhibits a high specific surface area due to the natural hierarchical porous structure of the precursor material. To reduce production costs of activated carbon, bio-waste materials receive more and more attention, which has led to a steep increase in the number of publications over the past decade. However, the characteristics of activated carbon are highly dependent on the properties of the precursor material used, making it difficult to draw assumptions about activation conditions for new precursor materials based on published work. Here, we introduce a Design of Experiment methodology with a Central Composite Design to better predict the properties of activated carbons from biomass. As a model precursor, we employ well-defined regenerated cellulose-based fibers which contain 25 wt.% chitosan as intrinsic dehydration catalyst and nitrogen donor. The use of the DoE methodology opens up the possibility to better identify the crucial dependencies between activation temperature and impregnation ratio on the yield, surface morphology, porosity and chemical composition of the activated carbon, independent of the used biomass. The use of DoE yields contour plots, which allows for more facile analysis on correlations between activation conditions and activated carbon properties, thus enabling its tailor-made manufacturing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9998870PMC
http://dx.doi.org/10.1038/s41598-023-30642-8DOI Listing

Publication Analysis

Top Keywords

activated carbon
20
activated carbons
8
precursor material
8
activation conditions
8
activated
7
carbon
5
design experiments
4
experiments tool
4
tool guide
4
guide preparation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!