Heat stress negatively affects the metabolism and physiology of the bovine gut. However, it is not known whether heat stress induces an inflammatory response in mesenteric lymph nodes (MLN), the primary origin of gut immune cells, and thus contributes to inflammatory processes in the circulation. Therefore, our objective was to elucidate the effects of chronic heat stress on the systemic activation of acute-phase response in blood, proinflammatory cytokine production in peripheral blood mononuclear cells (PBMC), and the activation of the toll-like receptor signaling (TLR) 2/4 pathway in MLN leucocytes and their chemokines and chemokine receptor profiles in Holstein cows. Primiparous Holstein cows (n = 30; 169 ± 9 d in milk) were exposed to a temperature-humidity index (THI) of 60 [16°C, 63% relative humidity (RH)] for 6 d. Thereafter, cows were evenly assigned to 3 groups: heat-stressed (HS; 28°C, 50% RH, THI = 76), control (CON; 16°C, 69% RH, THI = 60), or pair-feeding (PF; 16°C, 69% RH, THI = 60) for 7 d. On d 6, PBMC were isolated and on d 7 MLN. Plasma haptoglobin, TNFα, and IFNγ concentrations increased more in HS than CON cows. Concomitantly, TNFA mRNA abundance was higher in PBMC and MLN leucocytes of HS than PF cows, whereas IFNG mRNA abundance tended to be higher in MLN leucocytes of HS than PF cows, but not for chemokines (CCL20, CCL25) or chemokine receptors (ITGB7, CCR6, CCR7, CCR9). Furthermore, the TLR2 protein expression tended to be more abundant in MLN leucocytes of HS than PF cows. These results suggest that heat stress induced an adaptive immune response in blood, PBMC, and MLN leukocytes involving the acute-phase protein haptoglobin, proinflammatory cytokine production, and TLR2 signaling in MLN leucocytes. However, chemokines regulating the leucocyte trafficking between MLN and gut seem not to be involved in the adaptive immune response to heat stress.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2022-22520DOI Listing

Publication Analysis

Top Keywords

heat stress
20
mln leucocytes
20
adaptive immune
12
immune response
12
response blood
12
holstein cows
12
leucocytes cows
12
mln
9
blood mononuclear
8
mononuclear cells
8

Similar Publications

This study evaluated the effect of wheat germ oil (WGO), Bacillus subtilis, and their combination on growth performance, immune response, nutrient digestibility, intestinal microbial, oxidative status, and gene expression in heat-stressed broilers. Four hundred one-day-old male Ross 308 broilers were distributed into five pens (20 birds/pen) in four experimental groups: a control (CON) without additives, WGO group fed diet with WGO at 200 mg.kg, BS group fed diet with B.

View Article and Find Full Text PDF

Global warming is seriously threatening sheep farmings by increasing health problems and decreasing reproductive efficiency. In this study, pomegranate peels ethanolic extract (Ppee), rich in phenolic acids, was prepared in free (Fppee) and nanoemulsified (Nppee, with 18.49 nm-21.

View Article and Find Full Text PDF

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.

View Article and Find Full Text PDF

Detrimental effects of terminal heat stress could be mitigated by exogenous application of synthetic compounds by preserving cell membrane integrity and protecting against oxidative damage. A field experiment was conducted to test the application of seven synthetic compounds on wheat growth traits: (1) thiourea (20 mM and 40mM); (2) potassium nitrate (1% and 2%); (3) sodium nitroprusside (400 μg mL-1 and 800μg mL-1 ); (4) dithiothreitol (25 ppm and 50ppm); (5) salicylic acid (100 ppm and 200ppm); (6) thioglycolic acid (200 ppm and 500ppm); and (7) putrescine (4 mM and 6mM). These compounds were applied at the anthesis and grain-filling stages to enhance physio-biochemical traits and yield attributes of wheat (Triticum aestivum ) cvs GW-11 and GW-496 under terminal heat stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!