MED12 variants associated with X-linked recessive partial epilepsy without intellectual disability.

Seizure

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China. Electronic address:

Published: March 2024

AI Article Synopsis

  • *Whole-exome sequencing was conducted on 349 cases of unexplained partial epilepsy, identifying five hemizygous missense variants associated with this condition in male patients.
  • *Results indicate that these variants may lead to epilepsy without accompanying developmental delays, following an X-linked recessive inheritance pattern, with certain variants linked to early-onset seizures.

Article Abstract

Objectives: The MED12 gene encodes mediator complex subunit 12, which is a component of the mediator complex involved in the transcriptional regulation of nearly all RNA polymerase II-dependent genes. MED12 variants have previously been associated with developmental disorders with or without nonspecific intellectual disability. This study aims to explore the association between MED12 variants and epilepsy.

Materials And Methods: Trios-based whole-exome sequencing was performed in a cohort of 349 unrelated cases with partial (focal) epilepsy without acquired causes. The genotype-phenotype correlations of MED12 variants were analyzed.

Results: Five hemizygous missense MED12 variants, including c.958A>G/p.Ile320Val, c.1757G>A/p.Ser586Asn, c.2138C>T/p.Pro713Leu, c.3379T>C/p.Ser1127Pro, and c.4219A>C/p.Met1407Leu were identified in five unrelated males with partial epilepsy. All patients showed infrequent focal seizures and achieved seizure free without developmental abnormalities or intellectual disability. All the hemizygous variants were inherited from asymptomatic mothers (consistent with the X-linked recessive inheritance pattern) and were absent in the general population. The two variants with damaging hydrogen bonds were associated with early-onset seizures. Further genotype-phenotype analysis revealed that congenital anomaly disorder (Hardikar syndrome) was associated with (de novo) destructive variants in an X-linked dominant inheritance pattern, whereas epilepsy was associated with missense variants in an X-linked recessive inheritance pattern. Phenotypic features of intellectual disability appeared as the intermediate phenotype in terms of both genotype and inheritance. Epilepsy-related variants were located at the MED12-LCEWAV domain and the regions between MED12-LCEWAV and MED12-POL.

Conclusion: MED12 is a potentially causative gene for X-linked recessive partial epilepsy without developmental or intellectual abnormalities. The genotype-phenotype correlation of MED12 variants explains the phenotypic variations and can help the genetic diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.seizure.2023.02.018DOI Listing

Publication Analysis

Top Keywords

med12 variants
24
x-linked recessive
16
intellectual disability
16
partial epilepsy
12
inheritance pattern
12
variants
10
med12
8
variants associated
8
recessive partial
8
mediator complex
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!