Chronic Fetal Leucine Infusion Increases Rate of Leucine Oxidation but Not of Protein Synthesis in Late Gestation Fetal Sheep.

J Nutr

Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA. Electronic address:

Published: February 2023

Background: Leucine increases protein synthesis rates in postnatal animals and adults. Whether supplemental leucine has similar effects in the fetus has not been determined.

Objective: To determine the effect of a chronic leucine infusion on whole-body leucine oxidation and protein metabolic rates, muscle mass, and regulators of muscle protein synthesis in late gestation fetal sheep.

Methods: Catheterized fetal sheep at ∼126 d of gestation (term = 147 d) received infusions of saline (CON, n = 11) or leucine (LEU; n = 9) adjusted to increase fetal plasma leucine concentrations by 50%-100% for 9 d. Umbilical substrate net uptake rates and protein metabolic rates were determined using a 1-C leucine tracer. Myofiber myosin heavy chain (MHC) type and area, expression of amino acid transporters, and abundance of protein synthesis regulators were measured in fetal skeletal muscle. Groups were compared using unpaired t tests.

Results: Plasma leucine concentrations were 75% higher in LEU fetuses compared with CON by the end of the infusion period (P < 0.0001). Umbilical blood flow and uptake rates of most amino acids, lactate, and oxygen were similar between groups. Fetal whole-body leucine oxidation was 90% higher in LEU (P < 0.0005) but protein synthesis and breakdown rates were similar. Fetal and muscle weights and myofiber areas were similar between groups, however, there were fewer MHC type IIa fibers (P < 0.05), greater mRNA expression levels of amino acid transporters (P < 0.01), and a higher abundance of signaling proteins that regulate protein synthesis (P < 0.05) in muscle from LEU fetuses.

Conclusions: A direct leucine infusion for 9 d in late gestation fetal sheep does not increase protein synthesis rates but results in higher leucine oxidation rates and fewer glycolytic myofibers. Increasing leucine concentrations in the fetus stimulates its own oxidation but also increases amino acid transporter expression and primes protein synthetic pathways in skeletal muscle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10196590PMC
http://dx.doi.org/10.1016/j.tjnut.2022.12.027DOI Listing

Publication Analysis

Top Keywords

protein synthesis
28
leucine oxidation
16
leucine
14
leucine infusion
12
late gestation
12
gestation fetal
12
fetal sheep
12
leucine concentrations
12
amino acid
12
protein
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!