A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dopamine D1 receptor activation ameliorates ox-LDL-induced endothelial cell senescence via CREB/Nrf2 pathway. | LitMetric

Dopamine D1 receptor activation ameliorates ox-LDL-induced endothelial cell senescence via CREB/Nrf2 pathway.

Exp Cell Res

Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China. Electronic address:

Published: April 2023

Endothelial cell senescence is involved in endothelial dysfunction and aging-related vascular diseases. The D1-like dopamine receptor (DR1), a number of G-protein-coupled receptors, is currently under consideration as a potential therapeutic target for the prevention of atherosclerosis. However, the role of DR1 in regulating ox-LDL-stimulated endothelial cell senescence remains unknown. Here, we found that the elevated Prx hyperoxidation and reactive oxygen species (ROS) levels in ox-LDL-treated Human umbilical vein endothelial cells (HUVECs) were observed, suppressed by DR1 agonist SKF38393. Increased proportion of senescence-associated β-galactosidase (SA-β-gal) positive staining cells and activated p16/p21/p53 pathway in ox-LDL-treated HUVECs were significantly abolished by DR1 activation. In addition, SKF38393 increased the phosphorylation of cAMP response element-binding protein (CREB) at serine-133, nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and expression of HO-1 in HUVECs. In contrast, adding H-89, a PKA inhibitor, diminished the effects of DR1 activation. Further studies performed with DR1 siRNA confirmed that DR1 was involved in CREB/Nrf2 pathway. Taken together, DR1 activation reduces ROS production and cell senescence by upregulating CREB/Nrf2 antioxidant signaling in ox-LDL-induced endothelial cells. Thus, DR1 could be a potential molecular target to counteract oxidative stress-induced cellular senescence.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2023.113542DOI Listing

Publication Analysis

Top Keywords

cell senescence
16
endothelial cell
12
dr1 activation
12
dr1
9
dopamine receptor
8
ox-ldl-induced endothelial
8
creb/nrf2 pathway
8
endothelial cells
8
skf38393 increased
8
endothelial
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!