Human DDX5 and its yeast ortholog Dbp2 are ATP-dependent RNA helicases that play a key role in normal cell processes, cancer development, and viral infection. The crystal structure of the RecA1-like domain of DDX5 is available but the global structure of DDX5/Dbp2 subfamily proteins remains to be elucidated. Here, we report the first X-ray crystal structures of the Dbp2 helicase core alone and in complex with ADP at 3.22 Å and 3.05 Å resolutions, respectively. The structures of the ADP-bound post-hydrolysis state and apo-state demonstrate the conformational changes that occur when the nucleotides are released. Our results showed that the helicase core of Dbp2 shifted between open and closed conformation in solution but the unwinding activity was hindered when the helicase core was restricted to a single conformation. A small-angle X-ray scattering experiment showed that the disordered amino (N) tail and carboxy (C) tails are flexible in solution. Truncation mutations confirmed that the terminal tails were critical for the nucleic acid binding, ATPase, and unwinding activities, with the C-tail being exclusively responsible for the annealing activity. Furthermore, we labeled the terminal tails to observe the conformational changes between the disordered tails and the helicase core upon binding nucleic acid substrates. Specifically, we found that the nonstructural terminal tails bind to RNA substrates and tether them to the helicase core domain, thereby conferring full helicase activities to the Dbp2 protein. This distinct structural characteristic provides new insight into the mechanism of DEAD-box RNA helicases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10193013 | PMC |
http://dx.doi.org/10.1016/j.jbc.2023.104592 | DOI Listing |
J Virol
December 2024
Institute of Virology, Department for Pathobiology, University of Veterinary Medicine, Vienna, Austria.
Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.
View Article and Find Full Text PDFJ Clin Med
November 2024
Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland.
: The gene encodes chromodomain helicase DNA-binding protein 8 (CHD8), which is a transcriptional regulator involved in neuron development, myelination, and synaptogenesis. Some gene mutations lead to neurodevelopmental syndromes with core symptoms of autism. The aim of this study was to perform an analysis of the family-based association of gene polymorphisms with the occurrence and clinical phenotype of autism spectrum disorder (ASD).
View Article and Find Full Text PDFCells
November 2024
Laboratory of Embryology and Genetics of Human Malformations, Imagine Institute, INSERM UMR 1163, Université Paris Cité, 24 Boulevard du Montparnasse, 75015 Paris, France.
Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of mutant phenotypes.
View Article and Find Full Text PDFJ Med Virol
December 2024
Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.
RNA helicase DDX5 is a host restriction factor for hepatitis B virus (HBV) biosynthesis. Mass spectrometry (LC-MS/MS) identified significant DDX5-interacting partners, including interferon-inducible protein 16 (IFI16) and RBBP4/7, an auxiliary subunit of polycomb repressive complex 2 (PRC2). DDX5 co-eluted with IFI16, RBBP4/7, and core PRC2 subunits in size exclusion chromatography fractions derived from native nuclear extracts.
View Article and Find Full Text PDFSci Adv
December 2024
Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Cell-intrinsic mechanisms of immunogenicity in ovarian cancer (OC) are not well understood. Damaging mutations in the SWI/SNF chromatin remodeling complex, such as (BRG1), are associated with improved response to immune checkpoint blockade; however, the mechanism by which this occurs is unclear. We found that loss in OC models resulted in increased cancer cell-intrinsic immunogenicity, characterized by up-regulation of long-terminal RNA repeats, increased expression of interferon-stimulated genes, and up-regulation of antigen presentation machinery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!